
PackageBuilder: Querying for packages of tuples

Kevin Fernandes∗

University of Massachusetts
Amherst, USA

kevinf@umass.edu

additional authors:

Matteo Brucato Rahul Ramakrishna Azza Abouzied Alexandra Meliou

ABSTRACT
PackageBuilder is a system that extends query engines to
support package generation. A package is a collection of tu-
ples with certain global properties defined on the collection
as a whole. In contrast to traditional query answers where
each answer tuple needs to satisfy the query predicates, each
answer package needs to satisfy global constraints on the
collection of tuples: e.g., a package of recipes that collec-
tively do not exceed 2,200 calories. PackageBuilder in-
troduces simple extensions to the SQL language to support
package-level predicates, and includes a simple interface that
allows users to load datasets and interactively specify pack-
age queries. Our system allows users to interactively navi-
gate through the result packages, and to provide feedback by
fixing tuples within a package. PackageBuilder automat-
ically processes this feedback to refine the package queries,
and generate new sets of results.
Categories and Subject Descriptors:
H.2.3 [Languages]: Query languages
Keywords: PackageBuilder, package queries, constraint
optimization

1. INTRODUCTION
Traditional database queries define selection predicates

that each tuple in the result needs to satisfy. For exam-
ple, it is easy to query a database of recipes to retrieve all
the gluten-free meals, assuming that the amount of gluten
is reported as an attribute for each recipe. Traditional SQL
queries fall short in scenarios that require a set of answer tu-
ples to satisfy constraints collectively. Such scenarios arise
in a variety of applications.

Example 1.1 (Meal planner). An athlete needs to put
together a dietary plan in preparation for a race. She wants

∗Kevin Fernades is a senior undergraduate student, and ac-
tive contributor to the development of the meal-planner ap-
plication MealBot within the PackageBuilder framework.
The other contributors are listed as additional authors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
ACM 978-1-4503-2376-5/14/06.
http://dx.doi.org/10.1145/2588555.2612667.

a high-protein set of three meals for the day, that are be-
tween 2000 and 2500 calories in total. All meals should be
gluten-free.

This example cannot be expressed in traditional SQL:
SQL queries can easily check conditions that apply to each
tuple individually (e.g., no gluten), but they do not offer
ways to specify constraints that need to be verified collec-
tively over a set of answer tuples (e.g., enforce a limit on the
total number of calories).

We present PackageBuilder, a system that augments
database functionality to support the creation of packages.
A package is a collection of tuples that individually satisfy
base constraints and collectively satisfy global constraints.
The base constraints are equivalent to regular selection pred-
icates. For example, in the meal planner application, the
gluten-free restriction is a base constraint, as it can be ver-
ified independently on each meal. In contrast, the require-
ment that total calories should be within 2,000 to 2,500 calo-
ries needs to be assessed over a collection of meals.

2. A QUERY LANGUAGE FOR PACKAGES
We designed PaQL, a SQL-based package query language

for PackageBuilder, which allows for the declarative spec-
ification of packages. We use the meal planner scenario (Ex-
ample 1.1) to highlight PaQL’s key features. The following
query builds the athlete’s daily meal package:

SELECT PACKAGE(R) AS P
FROM Recipes R
WHERE R.gluten = ‘free’
SUCH THAT count(*) =3 AND

sum(calories) BETWEEN 2000 and 2500
MAXIMIZE sum(protein)

The introduction of the keyword PACKAGE differentiates
PaQL queries from relational SQL queries. Semantically,
PACKAGE, constructs bags from the tuples of the base rela-
tions listed in the FROM clause. With no further constraints,
there are infinitely many packages that can be built from
non-empty base relations1.

The objective clause MAXIMIZE is unique to packages as
well: it specifies that out of all packages that satisfy the base
and global constraints, the ones with larger values in the
MAXIMIZE clause are preferable. The objective clause can

1A package can have duplicate items within it. For example
a recipe can repeat multiple times.

1613



list more than one objective, e.g., MAXIMIZE sum(protein),
sum(carbs).

A package query defines two kinds of constraints. Base
constraints are defined in the WHERE clause, and they are
equivalent to selection predicates: any tuple in the package
needs to satisfy all base constraints. In the example query,
the base constraint R.gluten = ‘free’ specifies that each meal
in the package should be gluten-free. Global constraints are
defined in the SUCH THAT clause: each global constraint
needs to be satisfied collectively in the whole package. For
example, count(*)=3 specifies that the entire package should
have exactly 3 meals.

3. COMPUTING PACKAGE RESULTS
Evaluating package queries is nontrivial: even if packages

do not allow duplicate tuples, the number of possible pack-
ages is in the worst case exponential in the number of base
tuples. In contrast to preference queries [6, 3], Package-
Builder does not define preferences across constraints, and
relies on different evaluation methods that combine the use
of constraint optimization solvers, heuristic pruning, and lo-
cal search. PackageBuilder uses and extends the Tire-
sias query engine [4] to evaluate PaQL queries. The eval-
uation engine translates package queries to constraint opti-
mization problems, and employs state-of-the-art constraint
solvers to derive valid packages. Even though Package-
Builder uses the Tiresias query engine it has several dif-
ferences:
• Package queries specify tuple collections (packages), whereas

the how-to queries in Tiresias specify modifications (up-
dates) to underlying datasets.

• The PackageBuilder engine allows a tuple to appear
multiple times in a package result; this feature does not
map to any operation in Tiresias.

• PaQL is SQL-based whereas Tiresias uses a variant of
Datalog.

• PackageBuilder supports arbitrary boolean formulas in
the SUCH THAT clause, whereas Tiresias only supports
conjunctive how-to queries.

• PackageBuilder employs additional heuristic and prun-
ing techniques to increase the efficiency of package queries.

4. UNDERGRADUATE INVOLVEMENT
The undergraduate author is developing the MealBot ap-

plication as a demonstration of the PackageBuilder frame-
work. MealBot allows users to seamlessly create meal plans
that are customized to their nutritional needs. For exam-
ple, children struggling with obesity are often prescribed a
diet that includes 5 meals a day such that each meal is be-
tween 300 and 450 calories and the meal plan itself max-
imizes protein intake and minimizes fat intake. A child’s
parent can use MealBot to specify complex constraints and
retrieve suitable meal plans. MealBot provides different in-
teraction methods to specify and refine meal plans, both
using PaQL as well as allowing users to enter constraints
through a visual interface.

We list here the major efforts that involved the under-
graduate author:
Backend support (ongoing). Interactions with MealBot

are translated behind the scenes to PaQL queries. This
layer, developed in Python, transforms PaQL queries to

constraint optimization problems and invokes CPLEX [2]
to evaluate them. This is a team effort that focuses on
different evaluation strategies and design of optimization
heuristics for PaQL queries. The undergraduate author is
involved in the implementation of greedy heuristics that
explore package solutions in a random-walk fashion. The
undergraduate author is also heavily involved in testing
and modifying components of the system.

Front-end development (ongoing). The MealBot inter-
face is also a team effort, aiming to support various forms
of package representations and query interactions. The
undergraduate author is involved in various components
of the interface support, including the development of a
suggestion interface: when a user of MealBot selects an at-
tribute, tuple, or value, the interface provides intelligent
suggestions for possible constraints.

Data collection (completed). For the purposes of Meal-
Bot, we collected a rich dataset of recipes, including de-
tailed nutritional data from two web sources: Yummly [5]
and allrecipes.com [1]. Our web crawler used the Chee-
rio and PG modules of the Node.js platform. All of the
collected data contains absolute nutritional information,
such as calorie count, and each attribute’s daily percent-
age value based on a 2000 calorie diet. MealBot uses Post-
greSQL as the backend data management system, and all
collected recipes are stored in a single table.

5. RESEARCH DIRECTIONS
We are currently exploring several interesting research

directions within the PackageBuilder project. Package
queries are strictly more complex than regular SQL queries,
and their evaluation is not feasible with exhaustive search.
We are exploring solutions that reduce that search space
prior to the execution of package predicates, and we are ex-
perimenting with different greedy heuristics.

On the interaction front, we are developing smart filters
that allow users to navigate the solution space more effi-
ciently. The challenge is that typically there is a large num-
ber of valid package solutions, and each package in itself
can be large. As a result, users are overwhelmed by the re-
sults, and have a hard time understanding them. Our goal
is to find meaningful summarizations of the solution space,
for example, grouping similar packages together and quickly
finding related packages with each user selection.

6. REFERENCES
[1] Allrecipes. http://allrecipes.com.

[2] IBM ILOG. CPLEX: High-performance software for
mathematical programming and optimization.
http://www.ilog.com/products/cplex.

[3] W. Kießling, M. Endres, and F. Wenzel. The preference
sql system - an overview. IEEE Data Engineering
Bulletin, 34(2):11–18, 2011.

[4] A. Meliou and D. Suciu. Tiresias: The database oracle
for how-to queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD), pages 337–348, Scottsdale, AZ, May 2012.

[5] Yummly. http://www.yummly.com.

[6] X. Zhang and J. Chomicki. Preference queries over sets.
2013 IEEE 29th International Conference on Data
Engineering (ICDE), 0:1019–1030, 2011.

1614




