
PACKAGEBUILDER: From Tuples to Packages

Matteo Brucato? Rahul Ramakrishna? Alexandra Meliou? Azza Abouzied§

?School of Computer Science §Computer Science
University of Massachusetts New York University

Amherst, USA Abu Dhabi, UAE
{matteo,rahulram,ameli}@cs.umass.edu azza@nyu.edu

ABSTRACT
In this paper, we present PACKAGEBUILDER, a system that extends
query engines to support package generation. A package is a col-
lection of tuples with certain global properties defined on the col-
lection as a whole. In contrast to traditional query answers, where
each answer tuple needs to satisfy the query predicate constraints,
each answer package needs to satisfy global constraints on the col-
lection of tuples: e.g., a package of recipes that collectively do not
exceed 2,200 calories. PACKAGEBUILDER introduces simple ex-
tensions to the SQL language to support package-level predicates,
and includes a simple interface that allows users to load datasets
and interactively specify package queries. Our system allows users
to interactively navigate through the result packages, and to provide
feedback by fixing tuples within a package. PACKAGEBUILDER
automatically processes this feedback to refine the package queries,
and generate new sets of results.

1. INTRODUCTION
Traditional database queries define constraints (selection predi-

cates) that each tuple in the result needs to satisfy. While tradi-
tional SQL queries are undoubtedly expressive and powerful, they
fall short in scenarios that require a set of answer tuples to satisfy
constraints collectively. Such scenarios arise in a variety of appli-
cations:
Investment portfolio: A broker wants to construct an investment
portfolio for one of her clients. The client has a budget of $50K,
wants to invest at least 30% of the assets in technology, and wants
a balance of short-term and long-term options. The broker cannot
select each stock option individually, but rather needs to find a stock
package that satisfies all these constraints collectively.

Meal planner: An athlete needs to put together a dietary plan in
preparation for a race. She wants a high-protein set of three meals
for the day, that are between 2000 and 3000 calories in total. All
meals should be gluten-free. It is easy to exclude meals that include
gluten, as this condition can be checked for each meal (tuple) indi-
vidually with a regular selection predicate. Other constraints need
to be verified collectively over the entire package.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Vacation planner: A couple wants to organize a relaxing vaca-
tion at a tropical destination. They do not want to spend more than
$2,000 in flights and hotel combined, and they want to be in walk-
ing distance from the beach, unless they can fit a rental car in their
budget, in which case they are willing to stay farther away. Build-
ing the ideal vacation package is challenging, as the choice of hotel
affects the choice of other elements in the package (e.g., flights and
car rental).

In this paper we present PACKAGEBUILDER, a system that aug-
ments database functionality to support the creation of packages.
A package is a collection of tuples that individually satisfy base
constraints and collectively satisfy global constraints. The base
constraints are equivalent to regular selection predicates, and can
be evaluated individually for each tuple. For example, in the meal
planner application, the gluten-free restriction is a base constraint,
as it can be verified independently on each meal. In contrast, the
requirement that total calories should be within 2,000 to 2,500 calo-
ries: it cannot be evaluated on each meal individually, but needs to
be assessed over a collection of meals.

In this paper we show how to build such packages from database
data using package builder queries (PBQs). Our system addresses
three main challenges:
Language specification: Even though many use cases motivate
support for PBQs, this class of queries remains largely unsupported
with few tools targeting domain-specific packages (e.g., CourseR-
ank supports building course packages [2]). As part of this work,
we will present PaQL, a declarative query language that supports
package specifications. PaQL is designed with simple extensions
to standard SQL, so those familiar with SQL should find it intuitive
and easy to use (Section 3).

Interactive specification: Even traditional SQL queries can of-
ten be challenging for novice DBMS users to specify. To enable
user-friendly database applications, several systems now employ
application-independent visual metaphors for SQL query specifi-
cation [9, 3, 4]. PBQs are fundamentally harder to express and
evaluate compared to traditional SQL, therefore, it is increasingly
important to provide visual paradigms to guide users through build-
ing a query, as well as navigating and possibly refining the results.
PACKAGEBUILDER offers an interactive representation of datasets
that guides users in specifying base and global constraints for their
packages. The system interface also allows users to easily navigate
through the solution space by visualizing the result space, and to
refine the result packages. (Section 4).

Evaluation: In traditional database queries, the size of the answer
is polynomial in the size of the input data. This is not true for
package queries: If n tuples satisfy the base constraints of a pack-
age, there are Ω(2n) candidate packages that can satisfy the user’s
global constraints. This makes the evaluation of PBQs particularly

Highlight values,
cell, rows or
columns to get
suggestions for
constraints

Users can directly add constraints. An
auto-suggest feature helps with syntax

Natural language descriptions

The current package's position
in the result space is highlighted

Selecting a constraint shows
the rows or columns affected

Adaptive Exploration

Only packages found so far are visualized.
Running indicates incomplete result space.

Figure 1: PackageBuilder’s visual interface

challenging. With an exponential search space, efficiently search-
ing for packages that satisfy our users’ constraints requires apply-
ing non-trivial pruning techniques and search heuristics (Section
5).

We proceed to describe the main three aspects of our system that
are motivated by these challenges.

2. RELATED WORK
Package queries are instances of constraint satisfaction problems

(CSP) [6], a well-known class of NP-complete problems. As we
illustrate in Section5, package queries can often be encoded as lin-
ear programs [5]. This facilitates the use of fast, off-the-shelf LP
solvers. Package queries can be used to provide set-based recom-
mendations such as those provided by CourseRank [2]. PaQL is
powerful and can easily express pre-requisite constraints typical of
course package recommendation systems.

Package queries are also related to how-to queries [8], which
compute database instances that satisfy a set of base and global
constraints. Unlike package queries, how-to queries can create new
base tuples to satisfy constraints. How-to queries, however, cannot
produce multisets.

3. PaQL: PACKAGE QUERY LANGUAGE
Our PACKAGEBUILDER system extends traditional database

functionality to provide full-fledged support for packages. We
identify two important reasons to support packages at the database

level, rather than at the application level: (a) The data used to
construct packages, typically resides in a database system, and
packages themselves are structured data objects that naturally
should also be stored in and manipulated by a database system.
(b) The features of packages and the algorithms for constructing
them are not unique to each application; therefore, the burden
of package support should be shifted away from the application
developers.

We designed PaQL, a SQL-based package query language for
PACKAGEBUILDER, which allows for the declarative specification
of packages. We use the meal planner scenario from Section 1, to
highlight PaQL’s key features.

Basic package expressions
SELECT PACKAGE(R) AS P
FROM Recipes R

The introduction of the keyword PACKAGE differentiates PaQL
queries from relational SQL queries. Semantically, PACKAGE,
constructs bags (i.e. multisets) from the tuples of the base relations
listed within parentheses. With no further constraints, there are
infinitely many packages that can be built from non-empty base
relations because a package can have duplicate items within it. For
example, a recipe can be included in a package many times.

To limit the allowed repetition of tuples from a given relation in
a package, users can use the REPEAT keyword, as follows.

SELECT PACKAGE(R) AS P

FROM Recipes R REPEAT 0

This constructs sets from the tuples of the base relation rather
than bags. This restricts the package space from infinitely many
packages to at most 2n packages, where n is the number of tuples
in the base relation(s). Users can allow up to k duplicates per tuple
by specifying REPEAT k, which constricts the package space to
(k+2)n.

In the example query, the result is also a relation (not considering
repetitions), in that all tuples in the package are drawn from one re-
lation and, hence, have the same schema. However, a package can
also be constructed from tuples of different schemata, coming from
different relations. To express such a query, the language allows
user to list multiple relation within parenthesis, e.g. PACKAGE(R1,
R2, . . . , Rk). In this case, the resulting data model may not be rela-
tional any more.

Expressing base and global constraints
SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(∗) = 3 AND

SUM(calories) BETWEEN 2000 and 3000

A package query defines two kinds of constraints. Base con-
straints are defined in the WHERE clause, as they are semantically
equivalent to selection predicates on the base relation(s): any tuple
in the package needs to satisfy all base constraints. In the example
query, the base constraint R.gluten = ‘free’ specifies that each meal
in the package should be gluten-free.

Global constraints may not be expressed in the WHERE clause,
as they indicate properties on sets of tuples rather than on single
tuples. They are defined in the SUCH THAT clause: each global
constraint needs to be satisfied collectively in the whole package.
For example, count(*)=3 specifies that the entire package should
have exactly 3 meals.

While base-constraint predicates are in the form of single-tuple
predicates (e.g. Rel.attr ≤ const), global constraints are essentially
query-based predicates. For instance, COUNT(∗)= 3 is equiva-
lent to (and can be replaced with) (SELECT COUNT(∗) FROM P)
= 3. Similarly, SUM(calories) BETWEEN 2000 and 3000 can be
replaced with (SELECT SUM(calories) FROM P) BETWEEN 2000
and 3000. In general, expressing more complex constraints re-
quires using full-length subqueries, as in the following example:

SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(∗) = 3 AND

SUM(calories) BETWEEN 2000 and 3000 AND
(SELECT COUNT(∗) FROM P
WHERE carbs > 0) ≥ COUNT(∗)/2

This query expresses the fact that the athlete wants at least half
of the meals to contain carbohydrates.

Expressing optimization objectives
SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(∗) = 3 AND

SUM(calories) BETWEEN 2000 and 3000 AND
(SELECT COUNT(∗) FROM P
WHERE carbs > 0) ≥ COUNT(∗)/2

MAXIMIZE SUM(protein)
MINIMIZE SUM(fat)

The objective clauses MAXIMIZE and MINIMIZE are unique to
packages as well: they specify that out of all packages that satisfy
the base and global constraints, the ones with larger values in the
MAXIMIZE clause and smaller values in the MINIMIZE clause are
preferable. An objective clause can list more than one objective,
e.g., MAXIMIZE SUM(protein), SUM(carbs).

4. INTERFACE ABSTRACTIONS
Packages queries are more complex, semantically and algorith-

mically, compared to traditional database queries, and they pose
challenges on several fronts: (a) they can have complex specifica-
tions, (b) they are hard to process by users given the large volume
of results, and (c) they are computationally intensive to evaluate.
In this section, we describe several interface abstractions that we
implemented in PACKAGEBUILDER to address the first two chal-
lenges; we organize the discussion based on three different abstrac-
tions. We discuss the evaluation challenge in Section 5.

4.1 Specification
Our package template abstraction encodes package specifica-

tions in a familiar tabular format (we give a screenshot example
in Figure 1). The central component of the template is a sample
package, presented as a scrollable table of tuples. Additional
components include representations of base and global constraints,
optimization objectives, and suggestions for additional package
refinements. As a user interacts with the template by highlighting
elements in the sample package, PACKAGEBUILDER suggests
constraints [7, 1]. For example, when a user selects a cell within
the “fats” column, the system infers and proposes several con-
straints that restrict the amount of fats in each meal, and objectives
that minimize the total amount of fats. The package template is
quite expressive but is not as powerful as the PaQL language itself.
The abstraction tries to strike a balance between ease-of-use and
expressive power.

4.2 Presentation
In addition to capturing package specifications, PACKAGE-

BUILDER presents result packages to users in a way that allows
them to meaningfully view the entire package space. PACKAGE-
BUILDER analyzes the current query specification and selects
two dimensions to visually layout the valid packages along. The
user can use the visualization to navigate through the available
packages by selecting glyphs that represent packages.

4.3 Adaptive exploration
Many users may prefer a trial-and-error, incremental form of

package query specification rather than providing a complete and
precise specification at the get go. To facilitate this approach,
PACKAGEBUILDER presents a sample package that satisfies a few
initial constraints. Users can then select good tuples within the
sample and request a new sample that replaces the free tuples.
Users can repeat this process until they reach the ideal package.
PACKAGEBUILDER uses these selections to narrow the search
space as well as to identify additional package constraints.

5. QUERY EVALUATION
Evaluating package queries is nontrivial: even if the package

does not allow duplicate tuples, the number of possible packages is

in the worst case exponential in the number of base tuples. A brute-
force approach that generates and evaluates all candidate pack-
ages is thus impractical. We implement three different evalua-
tion strategies: (i) we identify constraints that allow PACKAGE-
BUILDER to substantially reduce the search space, (ii) we use local
search heuristics to discover valid packages, and (iii) we translate
package queries into integer programs and use off-the-shelf solvers
to find desirable solutions.

5.1 Pruning using cardinality constraints
For simplicity, let us consider package queries involving one

base relation. Suppose that n tuples satisfy the base constraints.
Our pruning strategy makes upper and lower horizontal cuts on the
search lattice. An upper cut at level u prunes away all packages
above level u from the search space, corresponding to all pack-
ages of cardinality greater than u. Similarly, a lower cut at level l
prunes away all packages below level l, corresponding to all pack-
ages of cardinality less than l. For queries allowing no duplicates
(i.e. with REPEAT 0), these cuts reduce the search space from 2n

to
(n

l
)
+
(n

l+1
)
+ · · ·+

(n
u−1

)
+
(n

u
)
. Analogously, the same strategy

can reduce the search space from (k+2)n to
((n

l
))
+
((n

l+1
))
+ · · ·+((n

u−1
))
+
((n

u
))1 for queries allowing at most k duplicates (i.e. hav-

ing REPEAT k).
A cardinality constraint is any constraint of the form

a ≤ COUNT(∗) ≤ b which limits the number of tuples in a
package to the range [a,b]. This trivially prunes the search space
with the cuts u = a and l = b. Other types of constraints must be
transformed into cardinality constraints by exploiting properties
of the corresponding aggregation functions. We describe, by the
means of simple examples, how SUM can be transformed into
cardinality constraints to similarly prune the search space.

Pruning SUM-based constraints
Consider the constraint on total calories per package:

2000≤ SUM(calories)≤ 3000 (1)

Clearly, for any tuple ti in the base relation, we have that
MIN(calories) ≤ ti.calories ≤ MAX(calories). Similarly, for any
pair of tuples ti, t j, we have that 2·MIN(calories) ≤ ti.calories +
t j.calories≤ 2·MAX(calories). Generalizing, for any set of k tuples,
k·MIN(calories) ≤ SUM(calories) ≤ k·MAX(calories). This entails
that

l = d 2000
MAX(calories)

e
u = b 3000

MIN(calories)
c

are the least and greatest number of tuples that can possibly sat-
isfy constraint (1). In fact, we can achieve the lower bound of
the constraint by having l recipes with MAX(calories) each, and we
can achieve the upper bound of the constraint by having at most u
recipes with MIN(calories) each.

This strategy applies to queries generating multisets of any kind,
i.e., having no REPEAT keyword, or having REPEAT k, for all k.
However, the bounds l and u can be too loose in cases where RE-
PEAT k is defined, especially for low k’s. Assume, for instance, that
the values of calories are as follows:

1We remind the readers that
((n

k
))
=

(n+k−1
k

)
denotes the number

of combination with repetitions, i.e. the number of multisubsets of
size k that can be formed from a set of size n.

tuple calories
t1 600
t2 750
t3 800
t4 1000
t5 4000

Here, MIN(calories) = 600 and MAX(calories) = 4000. Hence
l = 1 and u = 5, which only prunes away the empty package from
the search space. However, if no duplicates are allowed, no pack-
age of size 1, 2, 4 or 5 can actually achieve a sum in the range
of constraint (1). Similarly, if at most two duplicates are allowed,
there are solutions of size 2 (i.e. {t4, t4}). With three duplicates
allowed, there are also solutions of size 4, and so on.

With k duplicates allowed, the tightest lower and upper cardi-
nality bounds are computed as follows. Let MINk(calories) and
MAXk(calories) be the prefix sum and the inverse prefix sum2 of the
sorted sequence of calories values where each element is duplicated
exactly k times. For example, for the sequence 2,5,8 and k = 3,
MINk and MAXk are the prefix sum and the inverse prefix sum of
the sequence 2,2,2,5,5,5,8,8,8, respectively. Furthermore, con-
sider two auxiliary functions L and U , such that L(2000,MAXk)
calculates the position of the first element in the sequence MAXk
whose calories is at least 2000, and U(3000,MINk) calculates the
position of the last element in the sequence MINk whose calories is
not above 3000. The lower and upper cardinality cuts are:

l = L(2000,MAXk(calories))
u =U(3000,MINk(calories))

It can be shown that the bounds computed with the prefix sums
are equal to or tighter than those computed only with MIN and MAX,
or, in other words, that L(2000,MAXk(calories))≥d 2000

MAX(calories)
e

and U(3000,MINk(calories))≤b 3000
MIN(calories)

c. In the previous ex-
ample, the new bounds would be l = 1, u = 3 if no repetition are
allowed, which is better than those provided by MIN and MAX alone
because they prune out a larger portion of the search space. How-
ever, the two methods present complexity tradeoffs, in that comput-
ing prefix sums on the sorted sequence is more expensive, in gen-
eral, than computing only the minimum and maximum elements.

5.2 Heuristic Local Search
Pruning often reduces the search space significantly, but this re-

duction alone is seldom sufficient. In addition to pruning algo-
rithms, PACKAGEBUILDER employs heuristics that start from a
given candidate package P0, and perform local search to gener-
ate new packages iteratively. Given the package P0, PACKAGE-
BUILDER identifies tuple exchanges that can lead to a valid pack-
age by constructing a single SQL query to generate all possible re-
placements. For example, suppose we wish to generate meal pack-
ages with less than 3,000 total calories. Given the starting package
P0 that has a total of 3,500 calories, we can look for all possible
single-tuple replacements with the following SQL query:

SELECT T1.id,R1.id
FROM P0 AS T1, Recipes AS R1
WHERE 3500 - T1.calories + R1.calories ≤ 3000

The query is a selection over a cartesian product between the
candidate package and the recipe relation. This approach is very
efficient if we are looking to replace only a few tuples at a time.

2We consider the inverse prefix sum as the prefix sum of the re-
versed sequence. For instance, the inverse prefix sum of 2,6,10 is
10,16,18.

For k replacements, however, this method would require a 2k-way
join, which quickly becomes intractable. This method of heuristic
search is particularly useful for adaptive exploration (Section 4.3),
where users usually request the replacement of only a few tuples.

5.3 Constraint Solvers
For certain classes of package queries, PACKAGEBUILDER em-

ploys state-of-the-art constraint solvers to derive valid packages.
PACKAGEBUILDER translates the package query to integer pro-
grams, with an approach similar to the Tiresias system [8]. After
expressing the package query as an integer program, PACKAGE-
BUILDER invokes off-the-shelf constraint solvers to derive a solu-
tion.

5.4 Considerations
Our experience with PACKAGEBUILDER shows that each of the

evaluation techniques (pruning, heuristics, and IP reduction) have
different strengths and weaknesses. Heuristic search is very effec-
tive if the constraints of the package query are not very restric-
tive, and the search can navigate through different solutions with
small steps (single-tuple swaps). However, in a heavily constrained
space, heuristic search may have trouble reaching a valid pack-
age from an invalid package. Constraint solvers can handle fairly
complex queries, with a large number of variables and constraints.
However, perhaps surprisingly, they do not seem to perform as well
in smaller problems. They are also limited to returning a single
package solution at a time, and getting more packages requires sub-
sequent reruns. Given the large variation and different characteris-
tics of the three approaches, there is no clear winner, and in its
current version, PACKAGEBUILDER combines all three evaluation
methods to efficiently derive packages.

6. REFERENCES
[1] A. Abouzied et al. Dataplay: Interactive tweaking and

example-driven correction of graphical database queries. In
UIST. ACM, 2012.

[2] A. Parameswaran et al. Recommendation systems with
complex constraints: A courserank perspective. TOIS, June
2011.

[3] C. Olsten et al. Viqing: Visual interactive querying. In
Symposium on Visual Languages, pages 162–169. IEEE, 1998.

[4] C. Stolte et al. Polaris: a system for query, analysis, and
visualization of multidimensional databases. CACM, 51, Nov.
2008.

[5] D. Chen et al. Applied integer programming: modeling and
solution. Wiley. com, 2011.

[6] S. J. Russell et al. Artificial intelligence: a modern approach,
volume 74. Prentice hall Englewood Cliffs, 1995.

[7] S. Kandel et al. Wrangler: interactive visual specification of
data transformation scripts. In CHI. ACM, 2011.

[8] A. Meliou and D. Suciu. Tiresias: the database oracle for
how-to queries. In SIGMOD, pages 337–348. ACM, 2012.

[9] M. M. Zloof. Query-by-example: A data base language. IBM
Systems Journal, 16(4):324–343, 1977.

	Introduction
	Related Work
	PaQL: Package Query Language
	Interface Abstractions
	Specification
	Presentation
	Adaptive exploration

	Query Evaluation
	Pruning using cardinality constraints
	Heuristic Local Search
	Constraint Solvers
	Considerations

	References

