
Noname manuscript No.
(will be inserted by the editor)

Package queries:
Efficient and scalable computation of high-order constraints

Matteo Brucato1 · Azza Abouzied2 · Alexandra Meliou1

Received: date / Accepted: date

Abstract Traditional database queries follow a simple
model: they define constraints that each tuple in the result
must satisfy. This model is computationally efficient, as the
database system can evaluate the query conditions on each
tuple individually. However, many practical, real-world prob-
lems require a collection of result tuples to satisfy constraints
collectively, rather than individually. In this paper, we present
package queries, a new query model that extends traditional
database queries to handle complex constraints and prefer-
ences over answer sets. We develop a full-fledged package
query system, implemented on top of a traditional database
engine. Our work makes several contributions. (1) We design
PaQL, a SQL-based query language that supports the declar-
ative specification of package queries. We prove that PaQL
is at least as expressive as integer linear programming, and
therefore, evaluation of package queries is NP-hard. (2) We
present a fundamental evaluation strategy that combines the
capabilities of databases and constraint optimization solvers
to derive solutions to package queries. The core of our
approach is a set of translation rules that transform a package
query to an integer linear program. (3) We introduce an
offline data partitioning strategy allowing query evaluation to
scale to large data sizes. (4) We introduce SKETCHREFINE,
a scalable algorithm for package evaluation, with strong
approximation guarantees ((1± ε)-factor approximation).
(5) We present a method for parallelizing the REFINE phase
of SKETCHREFINE. (6) We present an empirical study of the
efficiency gains of providing integer solvers with starting so-

M. Brucato
matteo@cs.umass.edu

A. Abouzied
azza@nyu.edu

A. Meliou
ameli@cs.umass.edu

1 College of Information and Computer Sciences,
University of Massachusetts, Amherst, MA, USA

2 Computer Science, New York University, Abu Dhabi, UAE

lutions. (7) We present extensive experiments over real-world
and benchmark data. The results demonstrate that our meth-
ods are effective at deriving high-quality package results, and
achieve runtime performance that is an order of magnitude
faster than directly using ILP solvers over large datasets.

Keywords Package queries · Integer linear programming ·
Approximation algorithm · SketchRefine · PaQL

1 Introduction

Traditional, non-recursive database queries rely on a simple
evaluation model: they define constraints, in the form of selec-
tion predicates, that each tuple in the result must satisfy. This
model is computationally efficient,1 as the database system
can evaluate each tuple individually to determine whether
it satisfies the query conditions. However, many practical,
real-world problems require a collection of result tuples to
satisfy constraints collectively, rather than individually.

Example 1 (Meal planner) A dietitian needs to design a daily
meal plan for a patient. She wants a set of three gluten-free
meals, between 2,000 and 2,500 calories in total, and with a
low total intake of saturated fats.

Example 2 (Night sky) An astrophysicist is looking for rect-
angular regions of the night sky that may contain previously
unseen quasars. Regions are explored if their overall redshift
is within some specified parameters, and ranked according to
their likelihood of containing a quasar [21].

Example 3 (Investment portfolio) A broker wants to identify
a set of investment assets to form an investment portfolio. The
portfolio should diversify the asset types (e.g., 75% stocks,
25% bonds), limit exposure in certain categories (e.g., 20%
energy, 50% technology), and minimize volatility.

1 The evaluation of non-recursive SQL queries is polynomial with
respect to data complexity. When we discuss complexity in this paper,
we refer to data complexity.

2 M. Brucato et al.

In these examples, there are some conditions that can be
verified on individual data items (e.g., gluten content in a
meal), while others need to be evaluated on a collection of
items (e.g., total calories). Similar scenarios arise in a vari-
ety of application domains, such as product bundles, course
selection [31], team formation [2,26], vacation and travel
planning [9], and computational creativity [33]. Despite the
clear application need, database systems do not currently of-
fer support for these problems, and existing work has focused
on application- and domain-specific approaches [2,9,26,31].

In this paper, we present an application-independent,
database-centric approach to address these challenges:
We introduce a full-fledged system that supports package
queries, a new query model that extends traditional database
queries to handle complex constraints and preferences over
answer sets. Package queries are defined over traditional
relations, but return packages. A package is a collection of
tuples that (a) individually satisfy base predicates (traditional
selection predicates), and (b) collectively satisfy global
predicates (package-specific predicates). Package queries
are combinatorial in nature: the result of a package query
is a (potentially infinite) set of packages, and an objective
criterion can define a preference ranking among them.

Extending traditional database functionality to provide
support for packages, rather than supporting packages at the
application level, is justified by two reasons: First, the fea-
tures of packages and the algorithms for constructing them
are not unique to each application; therefore, the burden of
package support should be lifted off application developers,
and database systems should support package queries like
traditional queries. Second, the data used to construct pack-
ages typically resides in a database system, and packages
themselves are structured data objects that should naturally
be stored in and manipulated by a database system.

Our work addresses three important challenges:
Declarative specification of packages. The first challenge
is to support declarative specification of packages. SQL en-
ables the declarative specification of properties that result
tuples should independently satisfy. In Example 1, it is easy
to specify the exclusion of meals with gluten using a regular
SQL selection predicate. However, it is difficult to specify
global constraints (e.g., total calories of a set of meals should
be between 2,000 and 2,500 calories). Expressing such a
query in SQL requires either complex self-joins that explode
the size of the query, or recursion, which results in extremely
complex queries that are hard to specify and optimize (Sec-
tion 2). Our goal is to maintain the declarative power of
SQL, while extending its expressiveness to allow for the easy
specification of packages.
Evaluation of package queries. The second challenge per-
tains to the evaluation of package queries. Due to their com-
binatorial complexity, package queries are harder to evaluate
than traditional database queries [10]. Package queries are in

10-3

101

105

1 2 3 4 5 6 7

T
im

e
(s

)

Package Cardinality

SQL Formulation ILP Formulation

Fig. 1: Traditional database technology is ineffective at
package evaluation, and the runtime of the SQL formu-
lation of a package query (Section 2) grows exponentially.
In contrast, ILP solvers (Section 3) are more effective.

fact as hard as integer linear programs (Section 2.4). Exist-
ing database technology is ineffective at evaluating package
queries, even if one were to express them in SQL. Figure 1
shows the performance of evaluating a package query ex-
pressed as a multi-way self-join query in traditional SQL
(described in detail in Section 2) as opposed to an integer
linear program (Section 3). As the cardinality of the package
increases, so does the number of joins, and the runtime of
the SQL solution quickly becomes prohibitive: In a small set
of 100 tuples from the Sloan Digital Sky Survey dataset [34],
SQL evaluation takes almost 24 hours to construct a package
of 7 tuples. Our goal is to extend the database evaluation en-
gine to take advantage of external tools, such as ILP solvers,
which are more effective for combinatorial problems.
Performance and scaling to large datasets. The third chal-
lenge relates to query evaluation performance and scaling to
large datasets. Integer programming solvers have two major
limitations: they require the entire problem to fit in main
memory, and they fail when the problem is too complex (e.g.,
too many variables or too many constraints). Our goal is to
overcome these limitations through sophisticated evaluation
methods that allow solvers to scale to large data sizes.

Our work addresses these challenges through the design
of language and algorithmic support for the specification
and evaluation of package queries. Specifically, we make the
following contributions:

– We present PaQL (Package Query Language), a declarative
language that provides simple extensions to standard SQL
to support constraints at the package level. We prove that
PaQL is at least as expressive as integer linear program-
ming, which implies that evaluation of package queries is
NP-hard (Section 2).

– We present a fundamental evaluation strategy, DIRECT,
that combines the capabilities of databases and constraint
optimization solvers to derive solutions to package queries.
The core of our approach is a set of translation rules that
transform a package query to an integer linear program.
This translation allows for the use of highly-optimized
tools for the evaluation of package queries (Section 3).

– We introduce an offline data partitioning strategy that al-
lows package query evaluation to scale to large data sizes.

Package queries: Efficient and scalable computation of high-order constraints 3

The core of our evaluation strategy, SKETCHREFINE, con-
sists of separating the package computation into multiple
stages, each with small subproblems, which the solver
can evaluate efficiently. In the first stage, the algorithm
“sketches” an initial sample package from a set of repre-
sentative tuples, while the subsequent stages “refine” the
sketched package by solving an integer program within
each partition. SKETCHREFINE guarantees a (1±ε)-factor
approximation compared to DIRECT, where ε is a flexible
parameter of the offline partitioning. (Section 4).

– We present an extensive experimental evaluation on both
real-world data and the TPC-H benchmark (Section 6) that
shows that our query evaluation method SKETCHREFINE:
(1) is able to produce packages an order of magnitude
faster than the integer solver used directly on the entire
problem; (2) scales up to sizes that the solver cannot man-
age directly; (3) produces packages of very good quality in
terms of objective value; (4) is robust to partitioning built
in anticipation of different workloads.

– We design a parallel version of SKETCHREFINE that can
efficiently solve queries that require most of the partitions
to be accessed. We experimentally show that this type of
queries is a worst case for the offline data partitioning used
by SKETCHREFINE, and severely impacts the sequential
performance of the algorithm.

– We present an empirical study on preconditioning solvers
with starting solutions. Our results show that seeding
solvers with feasible packages can significantly improve
the performance of the solver especially on harder queries.

2 Language support for packages

Database systems do not natively support package queries.
While there are ways to express package queries in SQL,
these are cumbersome and inefficient. In this section, we
first describe two ways of expressing package queries in
SQL and explain their drawbacks. We then describe PaQL,
a declarative query language for specifying packages, and
analyze its complexity and expressivity.

2.1 Expressing package queries with SQL

Specifying packages with self-joins. In the limited case of
packages with strict cardinality, i.e., a fixed number of tuples,
it is possible to express package queries using relational
self-joins. The query of Example 1 requires three meals (a
package with cardinality three), and can be expressed as a
three-way self-join:

SELECT ∗ FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND

R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND
R3.gluten = ‘free’ AND
R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5

ORDER BY R1.sat_fat + R2.sat_fat + R3.sat_fat

Such a query is efficient only for constructing packages
with very small cardinality: larger cardinality requires a larger
number of self-joins, quickly rendering evaluation time pro-
hibitive (Figure 1). The benefit of this specification is that the
optimizer can use the traditional relational algebra operators,
and augment its decisions with package-specific strategies.
However, this method does not apply for packages of un-
bounded cardinality.

Specifying packages using recursion. SQL can express
package queries by generating and testing each possible sub-
set of the input relation. This requires recursion to build a
powerset table; checking each set in the powerset table for
the query conditions will yield the result packages. This ap-
proach has three major drawbacks. First, it is not declarative,
and the specification is tedious and complex. Second, it is
not amenable to optimization in existing systems. Third, it is
extremely inefficient to evaluate, because the powerset table
generates an exponential number of candidates.

2.2 Relation and package semantics

We first introduce some basic notation and describe the
semantics of packages. Let U be the universe of possible
tuples of a relation R and N the set of all the natural
numbers, N = {0,1, . . .}. R is a multiset over universe U ,
denoted as (U,mR), where mR : U → N is a multiplicity
function, indicating the number of occurrences of each
element of U in R. Throughout the paper, we use the
following multiset operators: Given relations R1 and
R2, R1 ⊆ R2, iff ∀t ∈ U : mR1(t) ≤ mR2(t); R1 ∪ R2 has
multiplicity mR1∪R2(t) = mR1(t)+mR2(t), ∀t ∈U ; R1 \R2
has multiplicity mR1\R2(t) = max{0,mR1(t) − mR2(t)},
∀t ∈U .

A package P, defined over R, is a multiset with multiplic-
ity mP : U→N, such that ∀t ∈U : mR(t) = 0 =⇒ mP(t) = 0.

2.3 PaQL: the Package Query Language

Our goal is to support declarative and intuitive package spec-
ification. In this section, we describe PaQL, a declarative
query language that introduces simple extensions to SQL to
define package semantics and package-level constraints.

PaQL syntax
Figure 2 shows the general syntax of PaQL (left) and the
specification for the query of Example 1 (right), which we
use as a running example to demonstrate PaQL’s features.
Square brackets enclose optional clauses and arguments, and
a vertical bar separates syntax alternatives. In this specifica-
tion, repeat is a non-negative integer; w_expression is
a Boolean expression over tuple values (as in standard SQL),
and can only contain references to relation_name
and relation_alias; st_expression is a Boolean
expression and obj_expression is an expression over

4 M. Brucato et al.

PaQL syntax specification

SELECT PACKAGE(∗|column_name [, . . .]) [AS] package_name
FROM relation_name [AS] relation_alias

[REPEAT repeat] [, . . .]
[WHERE w_expression]

[SUCH THAT st_expression]

[(MINIMIZE|MAXIMIZE) obj_expression]

PaQL query for Example 1

Q: SELECT PACKAGE(∗) AS P

FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.sat_fat)

Fig. 2: Specification of the PaQL syntax (left), and the PaQL query for Example 1 (right).

aggregate functions or SQL subqueries with aggregate func-
tions; both st_expression and obj_expression
can only contain references to package_name, which
specifies the name of the package result.

Basic package query
The new keyword PACKAGE differentiates PaQL from tradi-
tional SQL queries.

Q1: SELECT ∗ Q2: SELECT PACKAGE(∗)
FROM Recipes R FROM Recipes R

The semantics of Q1 and Q2 are fundamentally different:
Q1 is a traditional SQL query, with a unique, finite result set
(the entire Recipes table), whereas there are infinitely many
packages that satisfy the package query Q2: all possible mul-
tisets of tuples from the input relation. Each tuple, whether or
not unique in the input relation, has unbounded multiplicity
in the package. The result of a package query like Q2 is a
set of packages. Each package resembles a relational table
containing a collection of tuples (with possible repetitions)
from the relation Recipes. A package result of Q2 follows
the schema of Recipes. Similar to SQL, the PaQL syntax
allows the specification of the output schema in the SELECT
clause. For example, PACKAGE(sat_fat, kcal) only returns
the saturated fat and calorie attributes of the package.2

The language also permits multiple relations in the
FROM clause; in that case, the packages produced will
follow the schema of the join result. In the remainder of
this paper, we focus on package queries without joins.
This is for two reasons: (1) The join operation is part of
traditional SQL and can occur before package-specific
computations. (2) There are important implications in the
consideration of joins that extend beyond the scope of our
work. Specifically, materializing the join result is not always
necessary, but rather, there are space-time trade-offs and
system-level solutions that can improve query performance
in the presence of joins. These extensions are orthogonal to
the techniques we present in this work.

Although semantically valid, a query like Q2 would not
occur in practice, as most application scenarios expect few, or
even exactly one result. We proceed to describe the additional
constraints in the example query Q (Figure 2) that restrict the
number of package results.

2 This syntax slightly differs from the one presented in [6].

Repetition constraints
The REPEAT 0 statement in query Q from Figure 2 specifies
that each tuple from the input relation Recipe can appear in
a package result at most once (no repetitions are allowed). If
a tuple has duplicates in the input table (multiplicity greater
than 1), repetition restrictions are applied on each individual
duplicate. Formally, for input table R, REPEAT ρ, ρ≥ 0, im-
plies ∀t ∈U : mP(t)≤ mR(t)(1+ρ). If this restriction is ab-
sent (as in query Q2), the multiplicity of a tuple is unbounded.
By allowing no repetitions, Q restricts the package space from
infinite to 2n, where n is the size of the input relation. Gen-
eralizing, REPEAT ρ allows a package to repeat tuples up to
ρ times, resulting in (2+ρ)n candidate packages. Tuple rep-
etitions naturally appear in many problems (e.g., Example 3,
where multiple copies of the same investment asset can be
included in a portfolio). While the PaQL specification allows
for an arbitrarily large number of repetitions, we expect that
systems will impose a default bound in practice. In this paper,
we focus on queries with explicit repetition constraints.

Base and global predicates
A package query defines two types of predicates. A base
predicate, defined in the WHERE clause, is equivalent to a
selection predicate and can be evaluated with standard SQL:
any tuple in the package needs to individually satisfy the
base predicate. For example, query Q from Figure 2 specifies
the base predicate: R.gluten = ‘free’. Since base predicates
directly filter input tuples, they are specified over the input
relation R. Global predicates are the core of package queries,
and they appear in the new SUCH THAT clause. Global pred-
icates are higher-order than base predicates: they cannot be
evaluated on individual tuples, but on tuple collections. Since
they describe package-level constraints, they are specified
over the package result P, e.g., COUNT(P.∗) = 3, which
limits the query results to packages of exactly 3 tuples.

The global predicates in query Q abbreviate ag-
gregates that are in reality SQL subqueries. For example,
COUNT(P.∗)=3, abbreviates (SELECT COUNT(∗) FROM
P)=3. Using subqueries, PaQL can express arbitrarily
complex global constraints among aggregates over a package.

Objective clause
The objective clause specifies a ranking among candidate
package results, and appears with either the MINIMIZE

Package queries: Efficient and scalable computation of high-order constraints 5

or MAXIMIZE keyword. It is a condition on the package-
level, and hence it is specified over the package result
P, e.g., MINIMIZE SUM(P.sat_fat). Similar to global
predicates, this form is a shorthand for MINIMIZE (SELECT
SUM(sat_fat) FROM P). A PaQL query with an objective
clause returns a single result: the package that optimizes
the value of the objective. The evaluation methods that we
present in this work focus on such queries. In prior work [7],
we described preliminary techniques for returning multiple
packages in the absence of optimization objectives, but a
thorough study of such methods is left to future work.

While PaQL allows arbitrary aggregate functions in the
global predicates and the objective clause, in this work, we
only support package queries with linear aggregates over
numerical variables. A linear aggregate can be a constant or
an attribute value multiplied by a constant, or any linear com-
bination thereof. We defer the study of non-linear aggregates
and UDFs to future work.

2.4 Expressiveness and complexity of PaQL

Package queries can model a great variety of problems. They
are at least as expressive as integer linear programs (ILP),
and, therefore, at least as hard.

Theorem 1 (Expressiveness of PaQL) Every integer linear
program can be expressed as a package query in PaQL.

Proof We prove the result through a reduction from an ILP
problem to a PaQL query. The reduction involves two map-
pings: (1) a mapping from a general ILP instance I to a PaQL
query QI; (2) a mapping from a solution to the ILP problem
to a package p. The mappings are such that the solution to the
ILP is an optimal solution to I iff p is an optimal package for
QI. Let I be an ILP problem involving n integer variables3, k
linear constraints, and real coefficients ai, bi j and c j:

I : max ∑
n
i=1 aixi

s.t ∑
n
i=1 bi jxi ≤ c j ∀ j = 1, . . . ,k

xi ≥ 0,xi ∈ Z ∀i = 1, . . . ,n

The PaQL query QI constructed from I is:

QI: SELECT PACKAGE(∗) AS P FROM (
SELECT a1 AS attrob j, b11 AS attr1, . . . , b1k AS attrk
UNION · · ·
SELECT an AS attrob j, bn1 AS attr1, . . . , bnk AS attrk)

SUCH THAT SUM(P.attr1)≤ c1 AND . . .SUM(P.attrk)≤ ck
MAXIMIZE SUM(P.attrob j)

Let x̂ be an assignment to the variables in I. Package p
is constructed from x̂ by including tuple ti exactly x̂i times.

3 For ease of presentation, we show an ILP with nonnegative vari-
ables, but the mapping generalizes to arbitrary integer variables: nega-
tive variables negate the corresponding values in the query; for arbitrary
bounds on each variable, add cardinality constraints to individual tuples.

(⇒) Suppose x̂ is an optimal feasible solution to I. Then
∀ j = 1, . . . ,k,∑n

i=1 bi j x̂i ≤ c j and ∑
n
i=1 aix̂i is maximal.

Thus, by construction of p, ∀ j = 1, . . . ,k, SUM(p.attr j) =

∑
n
i=1 bi j x̂i ≤ c j, and SUM(p.attrob j) = ∑

n
i=1 aix̂i is maximal.

Therefore, p is an optimal package for query QI.
(⇐) If p is an optimal package for QI, then, by definition,
∀ j = 1, . . . ,k,∑n

i=1 bi j x̂i ≤ c j and ∑
n
i=1 aix̂i is maximal. ut

As a direct consequence of Theorem 1, we obtain the fol-
lowing result on the complexity of package query evaluation.

Corollary 1 (Complexity of Package Queries) Package
queries are NP-hard.

In Section 3, we extend the result of Theorem 1 to also
show that every PaQL query over any database instance can
be encoded as an integer linear program, through a set of
translation rules. This transformation is the first step in pack-
age evaluation, but, due to the limitations of ILP solvers, it is
not efficient or scalable in practice. To make package evalu-
ation practical, we develop SKETCHREFINE (Section 4), a
technique that augments the ILP transformation with a par-
titioning mechanism, allowing package evaluation to scale
to large datasets. In Section 7, we show how to parallelize
SKETCHREFINE, in order to efficiently answer queries that
require most of the partitions to be accessed. Finally, in Sec-
tion 8, we show how starting solutions can improve the per-
formance of the ILP solver.

3 ILP formulation of package queries

In this section, we present an ILP formulation for package
queries. This formulation is at the core of our evaluation
methods DIRECT and SKETCHREFINE. The results presented
in this section are inspired by the translation rules employed
by Tiresias [27] to answer how-to queries. However, there are
several important differences between how-to and package
queries, which we extensively discuss in the overview of the
related work (Section 9).

3.1 PaQL to ILP translation

Let R indicate the input relation of the package query, n = |R|
be the number of tuples in R, R.attr an attribute of R, P a
package, f a linear aggregate function (such as COUNT
and SUM), � ∈ {≤,≥} a constraint inequality, and v ∈ R a
constant. For each tuple ti from R, 1≤ i≤ n, the ILP problem
includes a nonnegative integer variable xi, xi ≥ 0, indicating
the number of times ti is included in an answer package. We
also use x̄ = 〈x1,x2, . . . ,xn〉 to denote the vector of all integer
variables. A PaQL query is formulated as an ILP problem
using the following translation rules.

Repetition constraint: The REPEAT keyword, expressible
in the FROM clause, restricts the domain that the variables
can take on. Specifically, REPEAT ρ implies 0≤ xi ≤ ρ+1.

6 M. Brucato et al.

Recipes
sat_fat kcal

t1 7.1 0.45 x1 = 0
t2 5.2 0.55 x2 = 1
t3 3.2 0.25 x3 = 1
t4 6.5 0.15 x4 = 0
t5 2.0 1.20 x5 = 1

min 7.1x1 +5.2x2 +3.2x3 +6.5x4 +2.0x5
s.t. x1 + x2 + x3 + x4 + x5 = 3

0.45x1 +0.55x2 +0.25x3
+0.15x4 +1.20x5 ≥ 2.0

0.45x1 +0.55x2 +0.25x3
+0.15x4 +1.20x5 ≤ 2.5

x1,x2,x3,x4,x5 ∈ {0,1}

Fig. 3: Example ILP formulation and solution for query
Q, on a sample Recipe dataset. There are only two pack-
ages that satisfy all the constraints, namely {t2, t3, t5} and
{t1, t2, t5}, but the first one is the optimal because it mini-
mizes the objective function.

Base predicate: Let β be a base predicate, e.g., R.gluten=
‘free’, and Rβ the relation containing tuples from R satisfying
β. We encode β by setting xi = 0 for every tuple ti 6∈ Rβ.

Global predicate: Each global predicate in the SUCH THAT
clause takes the form f (P) � v. For each such predicate,
we derive a linear function f ′(x̄) over the integer variables.
A cardinality constraint f (P) = COUNT(P.∗) is translated
into a linear function f ′(x̄) = ∑i xi. A summation constraint
f (P) = SUM(P.attr) is translated into a linear function
f ′(x̄) = ∑i(ti.attr)xi. We further illustrate the translation
with two non-trivial examples:

– AVG(P.attr)≤ v is translated as

∑i(ti.attr)xi/∑i xi ≤ v ≡ ∑i(ti.attr− v)xi ≤ 0

– (SELECT COUNT(∗) FROM P WHERE P.carbs> 0)≥
(SELECT COUNT(∗) FROM P WHERE P.protein ≤ 5)
is translated as

∑i(1Rc(ti)−1Rp(ti))xi ≥ 0

where
Rc := {ti ∈ R | ti.carbs> 0}
Rp := {ti ∈ R | ti.protein≤ 5}
1Rc(ti) := 1 if ti ∈ Rc; 0 otherwise
1Rp(ti) := 1 if ti ∈ Rp; 0 otherwise.

General Boolean expressions over the global predicates can
be encoded into a linear program using Boolean variables
and linear transformation tricks found in the literature [4].

Objective clause: We encode MAXIMIZE f (P) as
max f ′(x̄), where f ′(x̄) is the encoding of f (P). Similarly
MINIMIZE f (P) is encoded as min f ′(x̄).

We call the relations Rβ, Rc, and Rp described above
base relations. This formulation, together with Theorem 1,
shows that package queries with linear constraints and linear
objective functions correspond exactly to ILP problems.

Example 4 (ILP translation) Figure 3 shows a toy exam-
ple of the Recipes table, with two columns and 5 tuples.
To transform Q into an ILP, we first create a non-negative,

integer variable for each tuple: x1, . . . ,x5. The cardinality
constraint specifies that the sum of the xi variables should be
exactly 3. The global constraint on SUM(P.kcal) is formed
by multiplying each xi with the value of the kcal column
of the corresponding tuple, and specifying that the sum
should be between 2 and 2.5. The objective of minimizing
SUM(P.sat_fat) is similarly formed by multiplying each xi
with the sat_fat value of the corresponding tuple.

3.2 Query evaluation with DIRECT

Using the ILP formulation, we develop DIRECT, our basic
evaluation method for package queries. In Section 4, we ex-
tend this technique to our main algorithm, SKETCHREFINE,
which supports efficient package evaluation in large datasets.

Package evaluation with DIRECT employs three steps:

1. Base relations. We first compute the base relations, such
as Rβ, Rc, and Rp, with a series of standard SQL queries,
one for each, or by simply scanning R once and populating
these relations simultaneously.

2. ILP formulation. We transform the PaQL query to an ILP
problem using the rules described in Section 3.1. After
this phase, all variables xi such that xi = 0 can be elimi-
nated from the ILP problem because the corresponding
tuple ti cannot appear in any package solution. This can
significantly reduce the size of the problem.

3. ILP execution. We employ an off-the-shelf ILP solver, as
a black box, to get a solution to each of the integer variables
xi. Each xi informs the number of times tuple ti should be
included in the answer package.

Example 5 (ILP solution) The ILP solver operating on the
program of Figure 3 returns the variable assignments to xi
that lead to the optimal solution; xi = 0 means that tuple ti
is not included in the output package, and xi = k means that
tuple ti is included k times in the output package. Thus, the
result of Q is the package: {t2, t3, t5}.

4 Scalable package evaluation

The DIRECT algorithm has two crucial drawbacks. First, it
is only applicable if the input relation is small enough to
fit entirely in main memory: ILP solvers, such as IBM’s
CPLEX, require the entire problem to be loaded in memory
before execution. Second, even for problems that fit in main
memory, this approach may fail due to the complexity of
the integer problem. In fact, integer linear programming is
a notoriously hard problem, and modern ILP solvers use
algorithms, such as branch-and-cut [30], that often perform
well in practice, but can “choke” even on small problem sizes
due to their exponential worst-case complexity [8]. This may
result in unreasonable performance due to solvers using too
many resources (main memory, virtual memory, CPU time),
eventually thrashing the entire system.

Package queries: Efficient and scalable computation of high-order constraints 7

1

02

2 1

G1 G2

G3

G4

2

G1 G2

G3

G4

1

0
G1 G2

G3

G4

2 1

G1 G2

G3

G4

(b) Initial query using
representative tuples

(c) Initial package (e) Skipping G2 (g) Refinement
query for group G4

(h) Final approximate
package

REFINEPARTITION SKETCH

(d) Refinement
query for group G1

(f) Refinement
query for group G3

(a) Original tuples

Multiplicity of representative
tuples in the initial package

Representative and original tuples selected during previous steps, shown by
hatching lines, are aggregated and used to modify later refinement queries

Fig. 4: The original tuples (a) are partitioned into four groups and a representative is constructed for each group
(b). The initial sketch package (c) contains only representative tuples, with possible repetitions up the size of each
group. The refine query for group G1 (d) involves the original tuples from G1 and the aggregated solutions to all
other groups (G2, G3, and G4). Group G2 can be skipped (e) because no representatives could be picked from it. Any
solution to previously refined groups are used while refining the solution for the remaining groups (f and g). The final
approximate package (h) contains only original tuples.

In this section, we present SKETCHREFINE, an approxi-
mate divide-and-conquer evaluation technique for efficiently
answering package queries on large datasets. Rather than
solving the original large problem with DIRECT, SKETCHRE-
FINE smartly decomposes a query into smaller queries, for-
mulates them as ILP problems, and employs an ILP solver
as a black-box evaluation method to answer each individual
query. By breaking down the problem into smaller subprob-
lems, the algorithm avoids the drawbacks of the DIRECT

approach. Our implementation of SKETCHREFINE uses an
ILP solver as its underlining black box for solving the smaller
queries; however, SKETCHREFINE is more general in that it
can be used to scale any other black-box solution for solv-
ing package queries. Further, we prove that SKETCHREFINE

is guaranteed to always produce feasible packages with an
approximate objective value (Section 5.1).

The algorithm is based on an important observation: sim-
ilar tuples are likely to be interchangeable within packages.
A group of similar tuples can therefore be “compressed” to a
single representative tuple for the entire group. SKETCHRE-
FINE sketches an initial answer package using only the set
of representative tuples, which is substantially smaller than
the original dataset. This initial solution is then refined by
evaluating a subproblem for each group, iteratively replacing
the representative tuples in the current package solution with
original tuples from the dataset. Figure 4 provides a high-
level illustration of the three main steps of SKETCHREFINE:

1. Offline partitioning (Section 4.1). The algorithm as-
sumes a partitioning of the data into groups of similar
tuples. This partitioning is performed offline (not at query
time), and our experiments show that SKETCHREFINE

remains very effective even with partitionings that do not
match the query workload (Section 6.2.3). In our imple-
mentation, we partition data using k-dimensional quad
trees [13], but other partitioning schemes are possible.

Algorithm 1 Scalable package query evaluation
1: procedure SKETCHREFINE(Q: Package query, P: Partitioning)
2: pS← SKETCH(Q, P)
3: if failure then
4: return infeasible
5: else
6: (p,F)← REFINE(Q, P, pS)
7: if F 6= /0 then . REFINE failure
8: return infeasible
9: else . REFINE success

10: return p

2. Sketch (Section 4.2.1). SKETCHREFINE sketches an
initial package by evaluating the package query only over
the set of representative tuples.

3. Refine (Section 4.2.2). Finally, SKETCHREFINE trans-
forms the initial package into a complete package by
replacing each representative tuple with some of the
original tuples from the same group, one group at a time.

SKETCHREFINE always constructs approximate feasible
packages, i.e., packages that satisfy all the query constraints,
but with a possibly sub-optimal objective value that is
guaranteed to be within certain approximation bounds
(Section 5.1). SKETCHREFINE may suffer from false
infeasibility, which happens when the algorithm reports
a feasible query to be infeasible. The probability of false
infeasibility is, however, low and bounded (Section 5.2).

In the subsequent discussion, we use R(attr1, . . . ,attrk)
to denote an input relation with k attributes. R is par-
titioned into m groups G1, . . . ,Gm. Each group Gi ⊆ R,
1 ≤ i ≤ m, has a representative tuple t̃i, which may not
always appear in R. We denote the partitioned space with
P= {(Gi, t̃i) | 1≤ i≤ m}. We refer to packages that contain
representative tuples as sketch packages and packages with
only original tuples as complete packages (or simply pack-
ages). We denote a complete package with p and a sketch

8 M. Brucato et al.

package with pS, where S⊆P is the set of groups that are yet
to be refined to transform pS to a complete answer package p.

4.1 Offline Partitioning

SKETCHREFINE relies on an offline partitioning of the input
relation R into groups of similar tuples. Partitioning is based
on a set of partitioning attributes from the input relation R, a
size threshold, and a set of diameter bounds. The partitioning
attributes can be any subset of the numerical attributes of R.

Definition 1 (Size threshold, τ) The size threshold τ,
1 ≤ τ ≤ n, restricts the size of each partitioning group Gi,
1≤ i≤ m, to a maximum of τ original tuples, i.e., |Gi| ≤ τ.

Definition 2 (Diameter bounds) The diameter di j ≥ 0 of
a group Gi, 1≤ i≤ m, on attribute attr j, 1 ≤ j ≤ k, is the
greatest absolute distance between all pairs of tuples within
group Gi:

di j = max
t1,t2∈Gi

|t1.attr j− t2.attr j| (1)

The diameter bounds ωi j ≥ 0, 1≤ i≤ m, 1≤ j ≤ k, require
all diameters to be bounded by di j ≤ ωi j.

The size threshold, τ, affects the number of partitions, m:
a lower τ leads to smaller partitions, but more of them (larger
m). As we discuss later (Section 4.2), for best response time
of SKETCHREFINE, τ should be set so that both m and τ are
small. Our experiments show that a proper setting can lead to
an order of magnitude improvement in query response time
(Section 6.2.2).

The diameter bounds, ωi j, are not required, but they can
be enforced to ensure a desired approximation guarantee
(Section 5.1). Note that the same partitioning can be used
to support a multitude of queries over the same dataset. In
our experiments, we show that a single partitioning performs
consistently well across different queries. In general, enforc-
ing the diameter limits may cause the resulting partitions to
become excessively small. While still obeying the approxima-
tion guarantees, this could increase the number of resulting
partitions and thus degrade the running time performance
of SKETCHREFINE. This is an important trade-off between
running time and quality that we also observe in our experi-
ments (Section 6.2.4), and it is a very common characteristic
of most approximation schemes [36].

Partitioning method
Different methods can be used for partitioning. Our imple-
mentation is based on k-dimensional quad-tree indexing [13].
The method recursively partitions a relation into groups until
all the groups satisfy the size threshold and meet the diameter
limits. First, relation R is augmented with an extra group ID
column gid, such that t.gid= i iff tuple t is assigned to group
Gi. The procedure initially creates a single group G1 that
includes all the original tuples from relation R, by initializing
gid= 1 for all tuples. Then, it recursively proceeds as follows:

– The procedure computes the sizes and diameters of the
current groups via a query that groups tuples by their
gid value. The same group-by query also computes the
centroid tuple of each group. The centroid is computed
by averaging the tuples in the group on each of the parti-
tioning attributes.

– If group Gi has more tuples than the size threshold, or
a diameter larger than the allowed bound, the tuples in
group Gi are partitioned into 2k subgroups, where k is the
number of partitioning attributes. The group’s centroid
is the split point to generate sub-partitions: tuples that
reside in the same sub-partition are grouped together.

Our method recursively executes two SQL queries on each
subgroup that violates the size or the diameter conditions.

Stored representatives
After partitioning, a group-by query computes the mini-
mum, maximum, and average values of all the partitioning
attributes, and stores them in a relational table. At query time,
the algorithm loads representatives from this table, selecting
only one aggregate type per query attribute (either mini-
mum, maximum of average), into a representative relation
R̃(gid,attr1, . . . ,attrk). To ensure approximation guarantees
(Section 5.1), the maximum (minimum, resp.) value is cho-
sen for a maximization (minimization, resp.) query. For all
other attributes, the algorithm picks the average value.

Alternative partitioning approaches
We experimented with different clustering algorithms,
such as k-means [18], hierarchical clustering [24] and
DBSCAN [11], using off-the-shelf libraries such as
Scikit-learn [32]. Existing clustering algorithms present
various problems: First, they tend to vary substantially in
the properties of the generated clusters. In particular, none
of the existing clustering techniques can natively generate
clusters that satisfy the size threshold τ and diameter limits
ωi j. In fact, most of the clustering algorithms take as input
the number of clusters to generate, without offering any
means to restrict the size of each cluster nor their diameter.
Second, existing implementations only support in-memory
cluster computation, and DBMS-oriented implementations
usually need complex and inefficient queries. On the other
hand, space partitioning techniques from multi-dimensional
indexing, such as k-d trees [3] and quad trees [13], can be
more easily adapted to satisfy the size and diameter limits,
and to work within the database: our partitioning method
works directly on the input table via simple SQL queries.

Finally, partitioning could be dynamically generated at
query time: By maintaining the entire hierarchical structure
of the quad-tree index, one can traverse the index at query
time to generate the coarsest partitioning that satisfies the
required size and diameter limits. However, index traversal
incurs additional overhead at query time, compared to using
a precomputed static partitioning.

Package queries: Efficient and scalable computation of high-order constraints 9

One-time cost
Partitioning is an expensive procedure. To avoid paying its
cost at query time, the dataset is partitioned in advance and
used to answer a workload of package queries. For a known
workload, our experiments show that partitioning the dataset
on the union of all query attributes provides the best perfor-
mance in terms of query evaluation time and approximation
error for the computed answer package (Section 6.2.3). We
also demonstrate that our query evaluation approach is robust
to a wide range of partition sizes, and to imperfect partitions
that cover more or fewer attributes than those used in a partic-
ular query. This means that, even without a known workload,
a partitioning performed on all of the data attributes still
provides good performance.

Enforcing a diameter limit guarantees the theoretical ap-
proximation bounds of SKETCHREFINE (Section 5.1). How-
ever, partitioning only with a size threshold can also achieve
good quality in practice: Since partitioning splits a group on
its centroid, the resulting sub-partitions will naturally have
smaller diameters. Our experiments (Section 6) show that
partitioning on a size threshold alone results in good approxi-
mations while reducing the offline partitioning cost: Meeting
a size threshold requires fewer partitioning iterations than
meeting a diameter limit especially if the dataset is sparse
across the attribute domains.

4.2 Query evaluation with SKETCHREFINE

During query evaluation, SKETCHREFINE first sketches a
package solution using the representative tuples (SKETCH),
and then it refines it by replacing representative tuples with
original tuples (REFINE). We describe these steps using the
example query Q from Figure 2.

4.2.1 SKETCH

Using the representative relation R̃ (Section 4.1), the SKETCH

procedure constructs and evaluates a sketch query, Q(R̃). The
result is an initial sketch package, pS, containing represen-
tative tuples that satisfy the same constraints as the original
query Q:

Q(R̃):SELECT PACKAGE(∗) AS pS
FROM R̃

WHERE R̃.gluten = ‘free’
SUCH THAT

COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid = 1)≤ |G1|
AND . . .
(SELECT COUNT(∗) FROM pS WHERE gid = m)≤ |Gm|

MINIMIZE SUM(pS.sat_fat)

The new global constraints, highlighted in bold, ensure
that every representative tuple does not appear in pS more
times than the size of its group, Gi. This accounts for the rep-
etition constraint REPEAT 0 in the original query. Generaliz-
ing, with REPEAT ρ, each t̃i can be repeated up to |Gi|(1+ρ)

times. These constraints are simply omitted from Q(R̃) if the
original query does not contain a repetition constraint.

Since the representative relation R̃ contains exactly m
representative tuples, the ILP problem corresponding to this
query has only m variables. This is typically small enough
for the black-box ILP solver to manage directly, and thus
we can solve this package query using the DIRECT method
(Section 3.2). If m is too large, we can solve this query recur-
sively with SKETCHREFINE: the set of m representatives is
further partitioned into smaller groups until the subproblems
reach a size that can be efficiently solved directly.

The SKETCH procedure fails if the sketch query Q(R̃) is
infeasible, in which case SKETCHREFINE reports the original
query Q as infeasible (Algorithm 1). This may constitute false
infeasibility, if Q is actually feasible. In Section 5.2, we show
that the probability of false infeasibility is low and bounded,
and we present simple methods to avoid this outcome.

4.2.2 REFINE

Using the sketched solution over the representative tuples,
the REFINE procedure iteratively replaces the representative
tuples with tuples from the original relation R, until no more
representatives are present in the package. The algorithm re-
fines the sketch package pS one group at a time. For a group
Gi with representative t̃i, let p̃i ⊆ pS be the set of represen-
tatives picked from Gi (i.e., t̃i with possible duplicates). The
algorithm proceeds as follows:

– It derives package p̄i from pS, by eliminating all in-
stances of t̃i from pS. That is, p̄i = pS \ p̃i. This is a
solution to all groups except Gi.

– The algorithm then constructs a refine query, Qi(pS),
which searches for a set of tuples pi ⊆ Gi to replace the
eliminated representatives:
Qi(pS):SELECT PACKAGE(∗) AS pi

FROM Gi REPEAT 0
WHERE Gi.gluten = ‘free’
SUCH THAT
COUNT(pi.∗) + COUNT(p̄i.∗) = 3 AND
SUM(pi.kcal) + SUM(p̄i.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(pi.sat_fat)

– The algorithm adds the result of Qi(pS), pi, in the current
solution, pS. Now, group Gi is refined with actual tuples.

In Qi(pS), COUNT(p̄i.∗) and SUM(p̄i.kcal) are values
computed directly on p̄i before the query is formed. They
are used to modify the original constraint bounds to account
for tuples and representatives already chosen for all the other
groups. The global constraints in Qi(pS) ensure that the com-
bination of tuples in pi and p̄i satisfy the original query
Q. Thus, this step produces the new refined sketch package
p′S′ = p̄i∪ pi, where S′ = S\{(Gi, t̃i)}.

Since Gi has at most τ tuples, the ILP problem corre-
sponding to Qi(pS) has at most τ variables. This is typi-
cally small enough for the black-box ILP solver to solve

10 M. Brucato et al.

directly, and thus we can solve this package query using the
DIRECT method (Section 3.2). Similarly to the sketch query,
if τ is too large, we can solve this query recursively with
SKETCHREFINE: the tuples in group Gi are further parti-
tioned into smaller groups until the subproblems reach a size
that can be efficiently solved directly.

Ideally, the REFINE step will only process each group
with representatives in the initial sketch package once. How-
ever, the order of refinement matters as each refinement step
is greedy: it selects tuples to replace the representatives of a
single group, without considering the effects of this choice
on other groups. As a result, a particular refinement step may
render the query infeasible (no tuples from the remaining
groups can satisfy the constraints). When this occurs, RE-
FINE employs a greedy backtracking strategy that reconsiders
groups in a different order.

Greedy-backtracking REFINE

REFINE activates backtracking when it encounters an infea-
sible refine query, Qi(pS). Backtracking greedily prioritizes
the infeasible groups. This choice is motivated by a simple
heuristic: if the refinement on Gi fails, it is likely due to
choices made by previous refinements; therefore, by prioritiz-
ing Gi, we reduce the impact of other groups on the feasibility
of Qi(pS). This heuristic does not affect the approximation
guarantees (Section 5.1).

Algorithm 2 details the REFINE procedure. The algorithm
logically traverses a search tree (which is never constructed,
but is the result of recursive calls and bactracking), where
each node corresponds to a unique sketch package pS. The
traversal starts from the root, corresponding to the initial
sketch package, where no groups have been refined (S= P),
and finishes at the first encountered leaf, corresponding to a
complete package (S= /0). The algorithm terminates as soon
as it encounters a complete package, which it returns (line 4).
The algorithm maintains a set of failed groups, F, initially
empty (line 2), and assumes a (initially random) refinement
order for all groups in S, stored in a priority queue U (line 6).
It then tries to solve the refine query corresponding to each
of the groups in the queue (line 12). When a refine query
succeeds, the algorithm recursively proceeds with the next
group in the queue (lines 13-18). If any of the refine queries
fails, the failing group is added to F, and the algorithm imme-
diately backtracks, reporting the failure to the parent node in
the search tree (lines 25-29). Failures can occur at any depth
of the traversal. If a recursive call fails, all the failing groups
(F′) are prioritized (lines 19-22).

Theorem 2 (Correctness of REFINE) A package produced
by REFINE is guaranteed to satisfy the query constraints.

The theorem follows from the fact that, by construction,
the refine query, Qi(pS), identifies tuples replacements for
the representatives that do not break the overall constraints
of the original query.

Algorithm 2 Greedy backtracking REFINE

input:
– Q: the package query to be evaluated
– P= {(G1, t̃1), . . . ,(Gm, t̃m)}: partitioning groups
– S: partitioning groups yet to be refined (initially S= P)
– pS: the refining package (initially the result of SKETCH)

output: a feasible package containing only tuples, or failure
1: procedure REFINE(Q, P, pS)
2: F← /0 . Failed groups
3: if S= /0 then . Base case: all groups already refined
4: return (pS,F)

5: . Arrange S in some initial order (e.g., random)
6: U← priorityQueue(S)
7: while U 6= /0 do
8: (Gi, t̃i)← dequeue(U)
9: . Skip groups that have no representative in pS

10: if t̃i /∈ pS then
11: continue
12: pi← DIRECT(Qi(pS))
13: if Qi(pS) is feasible then
14: . Replace representative with tuples
15: p′S′ ← pS \ p̃i∪ pi
16: S′← S\{(Gi, t̃i)}
17: . Greedily recurse with refinable group
18: (p,F′)← REFINE(Q,P, p′S′)
19: if F′ 6= /0 then . REFINE failure
20: F← F∪F′
21: . Greedily prioritize non-refinable groups
22: prioritize(U,F)
23: else . REFINE success
24: return (p,F)
25: else . Qi(pS) is infeasible
26: if S 6= P then . If pS is not the initial package
27: . Greedily backtrack with non-refinable group
28: F← F∪{(Gi, t̃i)}
29: return (null,F)
30: . None of the groups in S can be refined (invariant: F = S)
31: return (null,F)

Let T (τ) be the time taken by the black box (in our case,
DIRECT using an ILP solver) to solve a problem of size
τ. We express the time complexity of the refine procedure
as a function of T (τ) and m, the number of partitions used
by SKETCHREFINE. In the best case, all refine queries are
feasible and the algorithm never backtracks. In this case, the
algorithm makes up to m calls to the solver to solve problems
of size up to τ, one for each refining group. In the worst
case, SKETCHREFINE tries every group ordering leading to
a factorial number of calls to the solver, O(T (τ)m!). Our
experiments show that the best case is the most common and
backtracking occurs infrequently.

False infeasibility and hybrid sketch queries
For a feasible query Q, false negatives, or false infeasibility,
may happen in two cases: (1) when the sketch query Q(R̃)
is infeasible; (2) when greedy backtracking fails (possibly
due to suboptimal partitioning). In both cases, SKETCHRE-
FINE would (incorrectly) report a feasible package query as

Package queries: Efficient and scalable computation of high-order constraints 11

infeasible. False negatives are, however, extremely rare, as
Theorem 4 establishes in Section 5.2.

In our evaluation, we use a small heuristic modification
to SKETCHREFINE to deal with these cases, which creates a
hybrid query by merging the sketch query Q(R̃) with one of
the refine queries. The hybrid sketch query, executed in place
of the original sketch query, selects tuples from a group and,
at the same time, representative tuples from all the remain-
ing groups. This simple technique can greatly reduce false
infeasibility by circumventing three potential cases of failure:
(1) The original sketch query, Q(R̃), may be infeasible due to
a bad representative from one of the groups. An hybrid sketch
query over that group could render the sketch phase possible.
(2) If a group fails in a later refine stage, solving that group
upfront with a hybrid sketch query could render the group’s
problem feasible, thanks to having representatives for the
other groups. (3) If a group fails in a later refine stage, a hy-
brid sketch query on a different group could avoid selecting
representatives for the failing group altogether. The algorithm
tries a hybrid sketch query on each group whenever the origi-
nal sketch query is infeasible or when all refines fail; it then
proceeds normally if one of the hybrid queries is feasible. Hy-
brid sketch proves extremely effective on our experimental
workload (Section 6): SKETCHREFINE with hybrid sketch
does not encounter even a single case of false infeasibility,
i.e., there is no query for which DIRECT produces a solution
but SKETCHREFINE does not.

5 Theoretical analysis of SKETCHREFINE

SKETCHREFINE scales package evaluation by breaking the
problem into smaller, manageable subproblems: the SKETCH

phase evaluates a package query over the representative tu-
ples of the partitions, and the REFINE phase evaluates pack-
age queries over each partition. This scalability comes at the
price of accuracy. A package returned by SKETCHREFINE

is guaranteed to satisfy all the query constraints, but it may
have a worse objective value than the package produced by
DIRECT evaluation. Moreover, SKETCHREFINE may incor-
rectly determine that a package query is infeasible, when
in fact it has a solution (false infeasibility). In this section,
we provide a theoretical analysis of the quality of results
produced by SKETCHREFINE. Specifically, we present two
theoretical results. First, we show that SKETCHREFINE of-
fers strong approximation guarantees: a package produced by
SKETCHREFINE is guaranteed to be within a (1± ε)-factor
from the package produced by DIRECT. Second, we show
that SKETCHREFINE fails to produce a package to a feasible
query (false infeasibility) with low probability.

5.1 Approximation guarantees

DIRECT and SKETCHREFINE employ a black-box solver
to evaluate either the original query (DIRECT), or the sub-

queries (the sketch and refine queries of SKETCHREFINE). If
the solver is exact, then DIRECT returns optimal solutions,
and the approximation guarantees of SKETCHREFINE are
with respect to the true optimal. In general however, solvers
may not be exact (e.g., ILP solvers typically provide ap-
proximations), in which case the approximation bound of
SKETCHREFINE is with respect to the approximation of the
solver. SKETCHREFINE allows control of its approximation
bounds through its offline partitioning. Specifically, we prove
that, for a desired approximation parameter ε, we can derive
diameter bounds ωi j (for each partitioning group Gi and at-
tribute attr j) for the offline partitioning that guarantee that
the solution produced by SKETCHREFINE (if any) has objec-
tive value (1± ε)-factor close to the objective value of the
solution produced by the solver for the same query.

Theorem 3 (Approximation Bounds) Let R(attr1, . . . ,attrk)
be a relation with k attributes, and let Q be a feasible
package query with a maximization (minimization, resp.)
objective over R. Let S be an exact solver that produces an
answer to Q with optimal objective value OPT . We denote
with ALG the objective value of the package returned by
SKETCHREFINE using S as a black-box solver. For any
ε ∈ [0,1) (ε ∈ [0,∞), resp.), there exists β ∈ [0,1) (β ∈ [1,∞),
resp.) that depends on ε, such that if R is partitioned into m
groups with diameter limits:

ωi j = min
t∈Gi
{|1−β| · |t.attr j|}, ∀i ∈ [1,m], ∀ j ∈ [1,k] (2)

then ALG≥ (1− ε)OPT (ALG≤ (1+ ε)OPT , resp.).

We present the proof of the theorem for the case of maxi-
mization queries. The minimization case follows analogous
reasoning. Without loss of generality, we consider a feasible
package query Q with a summation constraint on each of the
k attributes, SUM(attr j) ≤ U j, j ∈ [1,k], and a maximiza-
tion objective on SUM(attrob j). A COUNT constraint is a
special case of a SUM over an attribute that is equal to 1.
Partitioning over this attribute would result in groups with
zero diameter (the value of the attribute for all tuples in the
group is the same). Therefore, with respect to this attribute,
representatives are exact. Essentially, COUNT constraints do
not affect the approximation of the result.

We prove Theorem 3 in two steps. First, we show that
the initial SKETCH package approximates the optimal pack-
age by a factor β. Second, we show that the final package
returned by the REFINE procedure approximates the initial
SKETCH package by a factor β as well. Thus, the final re-
sult of SKETCHREFINE approximates the optimal package
by a factor of β2. We conclude the proof by showing an ex-
plicit value for β as a function of ε. The proof requires two
lemmas (Lemma 2 and Lemma 3 below). The first lemma
shows that if a package satisfies Q, replacing the tuples in the
package with their representative tuples generates a package

12 M. Brucato et al.

that satisfies a relaxed version of Q, where each constraint is
relaxed by a factor β. Below, we define such relaxed queries
as β-relaxations. The second lemma shows that if a pack-
age p1 optimizes Q and another package p2 optimizes its
β-relaxation, then the objective value of p1 cannot be worse
than the objective value of p2 by more than a factor β.

We first introduce some needed notation and definitions.
Given a package p, we denote the summation of its tuples on
attribute attr with SUM(p.attr), and its objective value with
OBJ(p), where OBJ(p)= SUM(p.attrob j). We now proceed
to define the concepts of ordering, and feasible, optimal, and
approximate packages, that are at the core of the proof.

Definition 3 (Package ordering �) A package p1 domi-
nates a package p2, denoted by p1 � p2, iff the objective
value of p1 is at least as good the objective value of p2:
OBJ(p1)≥OBJ(p2). With slight abuse of notation, we write
p1 � β p2 to denote that the objective value of p1 is as least
as good as the objective value of p2 by a factor β.

Definition 4 (Feasible package |=) We say that a package
p is feasible for Q, denoted by p |= Q, iff for all 1 ≤ j ≤ k:
SUM(p.attr j)≤U j.

Definition 5 (Optimal package |=∗) A package p is opti-
mal for Q, denoted by p |=∗ Q, iff p |= Q and for all p′ |= Q,
p� p′.

Definition 6 (β-approximation) A package p is a β-
approximation for query Q if p |= Q and for all p′ |= Q,
p� β p′.

Definition 7 (β-relaxation) The β-relaxation of query Q,
denoted by Qβ, is a query with the same objective function
as Q, and with k global constraints, for all 1≤ j ≤ k:

SUM(attr j)≤ β
−1U j

Definition 8 (Representative projection π) The representa-
tive projection of a package p, denoted by π(p), is a function
that substitutes each tuple in p with its representative tuple.

Because representative tuples have the best value on the
objective attribute attrob j of all the tuples in its group, π

satisfies the following property:

Property 1 The representative projection of a package domi-
nates the package: π(p)� p.

Before stating Lemma 2, we introduce another interme-
diate result. Lemma 1 states that the diameter conditions
of Equation (2) guarantee that all the tuples in a group are
“close” to each other by a factor no larger than β. We refer to
this as β-closeness, and we generalize this concept to pairs
of packages: two packages are β-close to each other if their
sums (on any attribute) are close to each other by a factor β.

Definition 9 (β-closeness) Any two tuples t1 and t2 are β-
close to each other iff for all 1≤ j ≤ k:

t1.attr j ≥ β t2.attr j and t2.attr j ≥ β t1.attr j

Any two packages p1 and p2 are β-close to each other iff for
all 1≤ j ≤ k:

SUM(p1.attr j)≥ β SUM(p2.attr j) and

SUM(p2.attr j)≥ β SUM(p1.attr j)

Lemma 1 If the partitioning satisfies the diameter limits
of Equation (2), then all tuples within the same group are
β-close to each other.

Proof Consider any group Gi, any attribute attr j, any
pair of tuples t1, t2 in Gi. First, |1 − β| = (1 − β) as
β ∈ [0,1). By Equation (1), t1.attr j ≥ t2.attr j − di j.
By Equation (2), di j ≤ (1−β)|t2.attr j|. Thus, either
(i) −di j ≥ (1−β) t2.attr j or (ii) −di j ≥ (β−1) t2.attr j:
If (i): t1.attr j ≥ t2.attr j +(1−β) t2.attr j > β t2.attr j
If (ii): t1.attr j ≥ t2.attr j +(β−1) t2.attr j = β t2.attr j ut

The following lemma states that the representative pro-
jection of a feasible package for query Q satisfies a β-relaxed
version of the same query.

Lemma 2 (Representative projection relaxation) For any
package p: p |= Q =⇒ π(p) |= Qβ.

Proof By hypothesis, for all 1≤ j ≤ k, U j ≥ SUM(p.attr j).
By Lemma 1, SUM(p.attr j) ≥ β SUM(π(p).attr j). There-
fore, SUM(π(p).attr j)≤ β−1 U j. ut

Lemma 3 (β-relaxation approximation) For any packages
p1, p2: p1 |=∗ Q and p2 |=∗ Qβ =⇒ p1 � β p2.

Proof Because p2 |=Qβ, for all 1≤ j≤m, SUM(p2.attr j)≤
β−1U j. Thus, β SUM(p2.attr j) ≤ U j and therefore, with
abuse of notation, β p2 |= Q. Since p1 |=∗ Q, p1 � β p2. ut

We are now ready to prove Theorem 3.

Proof (of Theorem 3) Let the initial sketch package be
denoted by p(0). Suppose, without loss of generality, that
the algorithm refines the initial package in the order:
G1,G2, . . . ,Gm. Let p(i) denote the intermediate refined
package produced at the i-th iteration of the algorithm. The
final complete package returned by the algorithm is thus
p(m). Let p∗ |=∗ Q be an optimal package. To prove the
theorem, we show that there exist a β such that p(m) � β2 p∗.
We do so in two steps:

p(0) � β p∗ (SKETCH) p(m) � β p(0) (REFINE)

(SKETCH) First, notice that p(0) |=∗ Q because p(0) op-
timizes the SKETCH query Q(R̃) (Section 4.2.1), which has

Package queries: Efficient and scalable computation of high-order constraints 13

identical constraints and maximization objective as Q. Con-
sider p′ |=∗ Qβ, the optimal package for the relaxed query
Qβ constructed with representative tuples. By Lemma 3,
we know that p(0) � β p′. By Lemma 2, we also know
that π(p∗) |= Qβ. Since p′ is the optimal package for Qβ,
p′ � π(p∗). Finally, by Property 1 of π, we also know that
π(p∗)� p∗. Putting these together, we have that:

p(0) � β p′ � β π(p∗) � β p∗

(REFINE) Consider package p(i)i , the solution the i-th
REFINE query (Section 4.2.2) computed at the i-th iteration of
the algorithm. Clearly, p(i)i |=∗ Qi(pS) because it optimizes
the REFINE query. SKETCHREFINE maintains this solution
for group Gi until the end of the procedure, thus p(m)

i = p(i)i

and, therefore, p(m)
i |=∗ Qi(pS). Consider now p(0)i , the set

of representatives computed during the SKETCH phase for
group Gi. Because of Lemma 1, during the course of the
algorithm, the constraints of a REFINE query can only vary
by a factor β. Thus, it must be that p(0)i |= Qi(pS)β

. Let
p′′ |=∗ Qi(pS)β

be the optimal package for the relaxed version

of Qi(pS). Then, p′′ � p(0)i . Also, by Lemma 3, we know
that p(m)

i � β p′′. Putting these together, we have that:

p(m)
i � β p′′ � β p(0)i

Finally, because p(m) = ∑
m
i=1 p(m)

i and p(0) = ∑
m
i=1 p(0)i , by

linearity of sum we have that p(m) � β p(0).

Thus, for β = (1− ε)
1
2 (β = (1+ ε)

1
2 , resp.), we get ap-

proximation factor 1− ε (1+ ε, resp.). ut

The theorem implies that, in order to obtain (1±ε)-factor
approximation, the partitioning must satisfy the following
diameter conditions for each group Gi and attribute attr j:

ωi j =

min
t∈Gi
|1− (1− ε)

1
2 | · |t.attr j| for maximization

min
t∈Gi
|1− (1+ ε)

1
2 | · |t.attr j| for minimization

5.2 False infeasibility bounds

The following theorem establishes that the probability that
SKETCHREFINE will fail to find a solution to a feasible query
is low and bounded.

Theorem 4 For any query Q and any random package P, if
P |= Q, then with high probability: (1) the SKETCH query
Q(R̃) is feasible; (2) all REFINE queries Qi(pS), 1≤ i≤ m,
are feasible. Thus, SKETCHREFINE returns a feasible result.

Proof (1) We first show that the sketch query Q(R̃) is feasible
with high probability.

Suppose, by hypothesis, that P |= Q. Thus, P satisfies all
constraints of Q. Let SUM(A) be any such constraint, where

A is either a constant, an attribute from the schema of the
input relation R, or a linear combination of attributes of R.
Because P is random, its representative projection π(P) (Def-
inition 8), constructed from P by replacing tuples with repre-
sentatives, is also a random package. Thus, both SUM(P.A)
and SUM(π(P).A) are random variables. We show that, with
high probability, SUM(π(P).A) does not differ from the ex-
pected SUM(P.A) and, thus, since P is feasible, so is π(P).
This implies that the sketch query Q(R̃) is feasible with high
probability, as at least one solution to it exists, namely π(P).

As a first step, we apply Hoeffding’s inequal-
ity [19] to SUM(π(P).A). For all c > 0, let γc,P =

2exp
(
− 2c2

|P|(MAX(A)−MIN(A))2

)
. Hoeffding’s inequality

establishes that the probability of SUM(π(P).A) deviating
from its expectation by more than c is bounded by a term,
γc,P, that is exponentially small in c and |P|:

Pr [|SUM(π(P).A)−E[SUM(π(P).A)]| ≥ c]≤ γc,P (3)

Let A be the random variable corresponding to the value
of attribute A of a random tuple in P, and let E[A] be its
expected value. Similarly, let Ã be the random variable corre-
sponding to a random representative tuple in π(P), and E[Ã]
its expected value. Finally, let G be the group a random rep-
resentative tuple in π(P) belongs to. Because representative
tuples are the centroids (mean) of all the tuples in their group
along the attributes involved in the constraints, we have that:

E[Ã] = E
[

1
|G| ∑G A

]
= 1
|G| ∑G E[A] = E[A] (4)

The expected sum over package π(P) is therefore:

E[SUM(π(P).A)] = ∑P E[Ã] = ∑P E[A] = E[SUM(P.A)]

Thus Equation (3) becomes:

Pr [|SUM(π(P).A)−E[SUM(P.A)]| ≥ c]≤ γc,P (5)

Equation (5) shows that the probability that the sum of A
over π(P) differs from the expected sum over P by more than
c > 0 is bounded. Since SUM(P.A) is feasible (by hypothe-
sis), so is SUM(π(P.)A), and the sketch query is feasible on
this constraint with high probability. This is independently
true for all query constraints. Thus, the probability of the
overall sketch query being infeasible is one minus the proba-
bility of all constraints being feasible. With k constraints, this
probability (sketch being infeasible) is small and bounded by
1− (1− γc,P)

k. This term is exponentially small in c and |P|,
so, with high probability, the sketch query Qi(pS) is feasible.

(2) Now, we show that all refine queries are feasible with
high probability. Equation 4 allows reasoning about each
refine query independently, as replacing representatives with
tuples does not change the expected sum in each group.

Let Pi be the tuples in P that belong to group Gi.
Then, π(Pi) is the set of representatives in π(P) that

14 M. Brucato et al.

belong to group Gi. We apply Hoeffding’s inequality on
SUM(Pi.A), obtaining an equation similar to Equation (3).
The proof now follows the same steps as the proof of (1),
now applied on SUM(Pi.A). From Equation (4), we have
that E[SUM(Pi).A)] = E[SUM(π(Pi))]. This results in an
equation similar to (5), showing that, if π(Pi) is feasible
for the i-th refine query, then Pi must also be feasible for
the same query. When π(P) is feasible, π(Pi) is a feasible
package for the i-th refine query Qi(pS), otherwise the sketch
query would be infeasible. This is independently true for all
constraints, and the probability of the overall query being
infeasible, with k constraints, is bounded by 1− (1− γc,P)

k.
Thus, for every group Gi, with high probability, the REFINE

query Qi(pS) is feasible. ut

Let the selectivity of a query be the probability of a ran-
dom package being infeasible. Thus, the lower the selectivity
of Q, the higher the probability Pr [P |= Q]. Therefore, a con-
sequence of Theorem 4 is that the lower the selectivity of
Q, the higher the probability that Q(R̃) and all Qi(pS) are
feasible, which implies that SKETCHREFINE will eventually
find a feasible package with high probability as well.

6 Experimental evaluation of SKETCHREFINE

In this section, we present an extensive experimental evalu-
ation of our techniques for package query execution, both
on real-world and on benchmark data. Our results show the
following properties of our methods: (1) SKETCHREFINE

evaluates package queries an order of magnitude faster than
DIRECT; (2) SKETCHREFINE scales up to sizes that DIRECT

cannot handle directly; (3) SKETCHREFINE produces pack-
ages of high quality (similar objective value as the packages
returned by DIRECT); (4) the performance of SKETCHRE-
FINE is robust to partitioning on different sets of attributes as
long as a query’s attributes are mostly covered. This makes
offline partitioning effective for entire query workloads.

6.1 Experimental setup

Software
We implemented our package evaluation system as a layer on
top of a traditional relational DBMS. The data itself resides
in the database, and the system interacts with the DBMS
via SQL when it needs to perform operations on the data.
We use PostgreSQL v9.3.9 for our experiments. The core
components of our evaluation module are implemented in
Python 2.7. The PaQL parser is generated in C++ from a
context-free grammar, using GNU Bison [15]. We represent
a package in the relational model as a standard relation with
schema equivalent to the schema of the input relation. A
package is materialized into the DBMS only when necessary
(for example, to compute its objective value).

TPC-H query Q1 Q2 Q3 Q4 Q5 Q6 Q7
Max # of tuples 6M 6M 6M 6M 240k 11.8M 6M

Fig. 5: Size of the tables used in the TPC-H benchmark.

Dataset Dataset size Size threshold τ Partitioning time
Galaxy 5.5M tuples 550k tuples 348 sec.
TPC-H 17.5M tuples 1.8M tuples 1672 sec.

Fig. 6: Partitioning time for the two datasets, using the
workload attributes and with no diameter condition.

We employ IBM’s CPLEX [20] v12.6.1 as our black-box
ILP solver. When the algorithm needs to solve an ILP prob-
lem, the corresponding data is retrieved from the DBMS and
passed to CPLEX using tuple iterator APIs to avoid having
more than one copy of the same data stored in main memory
at any time. We used the same settings for all solver execu-
tions: we set its working memory to 512MB; we instructed
CPLEX to store exceeding data used during the solve pro-
cedure on disk in a compressed format, rather than using
the operating system’s virtual memory, which, as per the
documentation, may degrade the solver’s performance; we
instructed CPLEX to emphasize optimality versus feasibility
to dampen the effect of internal heuristics that the solver may
employ on particularly hard problems; we enabled CPLEX’s
memory emphasis parameter, which instructs the solver to
conserve memory where possible; we set a solving time limit
of one hour; we also made sure that the operating system
would kill the solver process whenever it uses the entire avail-
able main memory. Our code is publicly available on our
project website: http://packagebuilder.cs.umass.edu.

Environment
We run all experiments on a ProLiant DL160 G6 server
equipped with two twelve-core Intel Xeon X5650 CPUs at
2.66GHz each, with 15GB or RAM, with a single 7200 RPM
500GB hard drive, running CentOS release 6.5.

Datasets and queries
We demonstrate the performance of our query evaluation
methods using both real-world and benchmark data. The real-
world dataset consists of approximately 5.5 million tuples
extracted from the Galaxy view of the Sloan Digital Sky
Survey (SDSS) [34], data release 12. For the benchmark
datasets we used TPC-H [35], with table sizes up to 11.8
million tuples.

We constructed a workload of seven feasible package
queries for each dataset, by adapting existing SQL queries
originally designed for each of the two datasets. For the
Galaxy dataset, we adapted real-world sample SQL queries
available directly from the SDSS website.4 For the TPC-H
dataset, we adapted seven SQL query templates provided

4 http://cas.sdss.org/dr12/en/help/docs/realquery.aspx

http://packagebuilder.cs.umass.edu
http://cas.sdss.org/dr12/en/help/docs/realquery.aspx

Package queries: Efficient and scalable computation of high-order constraints 15

with the benchmark that contained enough numerical at-
tributes. We performed query specification manually, by
transforming SQL aggregates into global predicates or ob-
jective criteria whenever possible, selection predicates into
global predicates, and by adding cardinality bounds. We did
not include any base predicates in our package queries be-
cause they can always be pre-processed by running a standard
SQL query over the input dataset (Section 3), and thus elimi-
nated beforehand. For the Galaxy queries, we synthesized the
global constraint bounds by multiplying the original selection
bounds by the package cardinality bounds. For the TPC-H
queries, we generated global constraint bounds uniformly at
random by multiplying random values in the value range of a
specific attribute by the cardinality bounds. We transformed
the original TPC-H SQL queries into single-relation package
queries by joining the original TPC-H tables using full outer
joins, containing all attributes needed by all the TPC-H pack-
age queries in our benchmark. This pre-joined table contained
approximately 17.5 million tuples. For each TPC-H package
query, we then extracted the subset of tuples having non-
NULL values on all the query attributes. The size of each re-
sulting table is reported in Table 5. Finally, we do not allow tu-
ple repetitions in any of the queries as they only affect the do-
mains of the ILP integer variables. We observed that allowing
tuple repetitions results in easier problems for the ILP solver.

Comparisons
We compare DIRECT with SKETCHREFINE. Both methods
use the ILP formulation (Section 3) to transform package
queries into ILP problems: DIRECT translates and solves
the original query; SKETCHREFINE translates and solves
the subqueries (Section 4), and uses hybrid sketch query
(Section 4.2.2) as the only strategy to cope with infeasible
initial queries.

Metrics
We evaluate methods on their efficiency and effectiveness.

Response time: We measure response time as wall-clock time
to generate an answer package. This includes the time taken
to translate the PaQL query into one or several ILP problems,
the time taken to load the problems into the solver, and the
time taken by the solver to produce a solution. We exclude
the time to materialize the package solution to the database
and to compute its objective value.

Approximation ratio: Recall that SKETCHREFINE is always
guaranteed to return an approximate answer with respect to
DIRECT (Section 5.1). In order to assess the quality of a pack-
age returned by SKETCHREFINE, we compare its objective
value with the objective value of the package returned by
DIRECT on the same query. Using Ob jS and Ob jD to denote
the objective values of SKETCHREFINE and DIRECT, respec-
tively, we compute the empirical approximation ratio Ob jD

Ob jS
for maximization queries, and Ob jS

Ob jD
for minimization queries.

An approximation ratio of one indicates that SKETCHRE-
FINE produces a solution with same objective value as the
solution produced by the solver on the entire problem. Typ-
ically, the approximation ratio is greater than or equal to
one. However, since the solver employs several approxima-
tions and heuristics, values lower than one, which means that
SKETCHREFINE produces a better package than DIRECT, are
possible in practice.

6.2 Results and Discussion

We evaluate four fundamental aspects of our algorithms:
(1) their query response time and approximation ratio with
increasing dataset sizes; (2) the impact of varying partition-
ing size thresholds, τ, on SKETCHREFINE’s performance;
(3) the impact of the attributes used in offline partitioning
on query runtime; (4) the impact of enforcing approximation
guarantees, ε, on the performance of SKETCHREFINE.

6.2.1 Query performance as dataset size increases

In our first set of experiments, we evaluate the scalability
of our methods on input relations of increasing size. First,
we partitioned each dataset using the union of all package
query attributes in the workload: we refer to these partition-
ing attributes as the workload attributes. We did not enforce
diameter conditions, ωi j, during partitioning for three rea-
sons: (1) because the diameter conditions may affect the
size of the resulting partitions, and we want to tightly con-
trol the partition size through the parameter τ; (2) to show
that an offline partitioning can be used to answer efficiently
and effectively both maximization and minimization queries,
even though they would normally require different diameters;
(3) to demonstrate the effectiveness of SKETCHREFINE in
practice, even without having theoretical guarantees in place.
Because we do not enforce approximation guarantees, the
group centroids are used as representatives for all queries.
In Section 6.2.4, we specifically test how varying the di-
ameter requirements through ε affects the running time of
SKETCHREFINE.

We perform offline partitioning setting the partition size
threshold τ to 10% of the dataset size. Table 6 reports the
partitioning times for the two datasets. We derive the par-
titionings for the smaller data sizes (less than 100% of the
dataset) in the experiments, by randomly removing tuples
from the original partitions. This operation is guaranteed to
maintain the size condition.

Figure 7 reports our scalability results on the Galaxy and
TPC-H benchmarks. The figure displays the query response
time in seconds on a logarithmic scale, averaged across 10
runs for each datapoint. At the bottom of each plot, we also
report the mean and median approximation ratios across
all dataset sizes. The graph for Q2 on the galaxy dataset
does not report approximation ratios, because DIRECT eval-
uation fails to produce a solution for this query across all

16 M. Brucato et al.

Direct SketchRefine

Scalability on Galaxy

T
im

e
(s

)

Q1

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q2

101

10% 40% 70% 100%

�������������������:
Mean: —, Median: —

Dataset size

Q3

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.13, Median: 1.06

Dataset size

Q4

101

102

10% 40% 70% 100%

�������������������:
Mean: 2.76, Median: 2.67

Dataset size

Q5

100

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q6

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q7

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.01, Median: 1.00

Dataset size

Scalability on TPC-H

T
im

e
(s

)

Q1

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.18, Median: 1.14

Dataset size

Q2

101

102

10% 40% 70% 100%

�������������������:
Mean: 8.27, Median: 6.04

Dataset size

Q3

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.60, Median: 1.50

Dataset size

Q4

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q5

100

10% 40% 70% 100%

�������������������:
Mean: 1.90, Median: 2.00

Dataset size

Q6

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.80, Median: 2.00

Dataset size

Q7

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.89, Median: 1.95

Dataset size

Fig. 7: Scalability on the Galaxy and TPC-H benchmarks. SKETCHREFINE uses an offline partitioning computed on
the full dataset, using the workload attributes, τ = 10% of the dataset size, and no diameter condition. In Galaxy,
DIRECT scales up to millions of tuples in about half of the queries, but it fails on the other half. In TPC-H, DIRECT
scales up to millions of tuples in all queries. SKETCHREFINE scales up nicely in all cases, and runs about an order
of magnitude faster than DIRECT. Its approximation ratio is generally very low, even though the partitioning is
constructed without diameter conditions.

data sizes. We observe that DIRECT can scale up to millions
of tuples in three of the seven Galaxy queries, and in all
of the TPC-H queries. Its run-time performance degrades,
as expected, when data size increases, but even for very
large datasets DIRECT is usually able to answer the package
queries in less than a few minutes. However, DIRECT has
high failure rate for some of the Galaxy queries, indicated by
the missing data points in some graphs (queries Q2, Q3, Q6
and Q7 in the Galaxy dataset). This happens when CPLEX
uses the entire available main memory while solving the
corresponding ILP problems. For some queries, such as Q3
and Q7, this occurs with bigger dataset sizes. However, for
queries Q2 and Q6, DIRECT even fails on small data. This
is a clear demonstration of one of the major limitations of
ILP solvers: they can fail even when the dataset can fit in
main memory, due to the complexity of the integer problem.
In contrast, our scalable SKETCHREFINE algorithm is able
to perform well on all dataset sizes and across all queries.
SKETCHREFINE consistently performs about an order of
magnitude faster than DIRECT across all queries, both on
real-world data and benchmark data. Its running time is con-
sistently below one or two minutes, even when constructing
packages from millions of tuples.

Both the mean and median approximation ratios are very
low, usually all close to one or two. This shows that the
substantial gain in running time of SKETCHREFINE over
DIRECT does not compromise the quality of the resulting
packages. Our results indicate that the overhead of partition-

ing with diameter limits is often unnecessary in practice.
Since the approximation ratio is not enforced, SKETCHRE-
FINE can potentially produce bad solutions, but this happens
rarely. In our experiments, this only occurred with query Q2
from the TPC-H benchmark.

6.2.2 Effect of varying partition size threshold

The size of each partition, controlled by the partition size
threshold τ, is an important factor that can impact the per-
formance of SKETCHREFINE: Larger partitions imply fewer
but larger subproblems, and smaller partitions imply more
but smaller subproblems. Both cases can significantly impact
the performance of SKETCHREFINE. In our second set of
experiments, we vary τ, which is used during partitioning to
enforce the size condition (Section 4.1), to study its effects
on the query response time and the approximation ratio of
SKETCHREFINE. In all cases, along the lines of the previous
experiments, we do not enforce diameter conditions and pick
each group’s centroid as the representative. Figure 8 shows
the results obtained on the Galaxy and TPC-H benchmarks,
using 30% and 100% of the original data, respectively. We
vary τ from higher values corresponding to fewer but larger
partitions, on the left-hand size of the x-axis, to lower values,
corresponding to more but smaller partitions. When DIRECT

is able to produce a solution, we also report its running time
(horizontal line) as a baseline for comparison.

Our results show that the partition size threshold has a
major impact on the execution time of SKETCHREFINE, with

Package queries: Efficient and scalable computation of high-order constraints 17

Direct SketchRefine

Effect of size threshold on Galaxy

T
im

e
(s

)

Q1

101

102

102104106

�������������������:
Mean: 1.00, Median: 1.00

Partition size threshold

Q2

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q3

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q4

101

102

102104106

�������������������:
Mean: 1.78, Median: 1.01

Partition size threshold

Q5

101

102

102104106

�������������������:
Mean: 1.00, Median: 1.00

Partition size threshold

Q6

101

102

102104106

�������������������:
Mean: —, Median: —

Partition size threshold

Q7

101

102

102104106

�������������������:
Mean: 1.01, Median: 1.00

Partition size threshold

Effect of size threshold on TPC-H

T
im

e
(s

)

Q1

101

102

104106

�������������������:
Mean: 1.08, Median: 1.12

Partition size threshold

Q2

101

102

103

102104106

�������������������:
Mean: 1.37, Median: 1.00

Partition size threshold

Q3

101

102

104106

�������������������:
Mean: 1.70, Median: 1.50

Partition size threshold

Q4

102

104106

�������������������:
Mean: 1.00, Median: 1.00

Partition size threshold

Q5

100

101

102104

�������������������:
Mean: 1.57, Median: 2.00

Partition size threshold

Q6

102

104106

�������������������:
Mean: 1.20, Median: 1.00

Partition size threshold

Q7

102

104106

�������������������:
Mean: 1.99, Median: 2.18

Partition size threshold

Fig. 8: Impact of partition size threshold τ on the Galaxy and TPC-H benchmarks, using, respectively, 30% and 100%
of the dataset. Partitioning is performed at each value of τ using all the workload attributes, and with no diameter
condition. The baseline DIRECT and the approximation ratios are only shown when DIRECT is successful. The results
show that τ has a major impact on the running time of SKETCHREFINE, but almost no impact on the approximation
ratio. SKETCHREFINE can be an order of magnitude faster than DIRECT with proper tuning of τ.

T
im

e
In

cr
ea

se
 R

at
io

Galaxy

0.1

1

10

1 3 5 7 9 11 13

�������������������:
Mean: 1.22, Median: 1.00

Partitioning coverage

TPC-H

0.1

1

10

1 3

�������������������:
Mean: 3.05, Median: 1.00

Partitioning coverage

Fig. 9: Increase or decrease ratio in running time of
SKETCHREFINE with different partitioning coverages.
Coverage one, shown by the red dot, is obtained by par-
titioning on the query attributes. The results show an
improvement in running time when partitioning is per-
formed on supersets of the query attributes, with very
good approximation ratios.

extreme values of τ (either too low or too high) often resulting
in slower running times than DIRECT. With bigger partitions,
on the left-hand side of the x-axis, SKETCHREFINE takes
about the same time as DIRECT because both algorithms
solve problems of comparable size. When the size of each
partition starts to decrease, moving from left to right on
the x-axis, the response time of SKETCHREFINE decreases
rapidly, reaching about an order of magnitude improvement
with respect to DIRECT. Most of the queries show that there
is a “sweet spot” at which the response time is the lowest:
when all partitions are small, and there are not too many
of them. The point is consistent across different queries,

showing that it only depends on the input data size (refer
to Table 5 for the different TPC-H data sizes). After that
point, although the partitions become smaller, the number of
partitions starts to increase significantly. This increase has
two negative effects: it increases the number of representative
tuples, and thus the size and complexity of the initial SKETCH

query, and it increases the number of groups that REFINE

may need to refine to construct the final package. This causes
the running time of SKETCHREFINE, on the right-hand side
of the x-axis, to increase again and reach or surpass the
running time of DIRECT. We only report mean and median
approximation ratios, which are in all cases very close to one,
indicating that SKETCHREFINE retains very good quality
regardless of the partition size threshold. We studied how
different partitioning size thresholds (τ) affect approximation
ratios. We observed that the ratio follows an inverse trend to
that of the running time in Figure 8. In the two extreme cases,
when there is only one partition of size n (SKETCHREFINE is
a single refine query that corresponds to DIRECT) and when
there are n partitions of size 1 (SKETCHREFINE is a sketch
query over n groups of a single tuple each), SKETCHREFINE

returns the optimal solution (approximation ratio 1). Between
these endpoints, for some queries, the approximation ratio
can be higher than 1. With a smaller number of partitions,
our partitioning algorithm produces larger partitions with
potentially large diameters, but each refine query produces
an optimal solution over a larger subproblem. As the number
of partitions increases, the refine query operates over smaller
subproblems leading to worse approximation ratios, until

18 M. Brucato et al.

Direct SketchRefine

T
im

e
(s

)

Q1

.4 .2 .1 .05 .025 .0125

101

Approximation Ratio:
Mean: 1.00, Median: 1.00

Q2

.4 .2 .1 .05 .025 .0125

102

103

Approximation Ratio:
Mean: , Median:

Q3

.4 .2 .1 .05 .025 .0125

101

102

Approximation Ratio:
Mean: 1.00, Median: 1.00

Q4

.4 .2 .1 .05 .025 .0125

101

Approximation Ratio:
Mean: 1.00, Median: 1.00

Q5

.4 .2 .1 .05 .025 .0125

101

Approximation Ratio:
Mean: 1.00, Median: 1.00

Q6

.4 .2 .1 .05 .025 .0125

102

Approximation Ratio:
Mean: 1.00, Median: 1.00

Q7

.4 .2 .1 .05 .025 .0125

102

Approximation Ratio:
Mean: 1.00, Median: 1.00

Fig. 10: Impact of the approximation parameter ε (increasingly stricter approximation requirements) on the Galaxy
workload, using 10% of the dataset size. Partitioning is performed on the query attributes, without enforcing a limit
on the size of the partitions, τ, while imposing diameter limits governed by ε. The baseline DIRECT and the approxima-
tion ratios are only shown when DIRECT is successful. The results show that ε has a major impact on the running time
of SKETCHREFINE, as a smaller ε implies smaller partition diameters and, thus, more partitions, while maintaining
the approximation ratio always down to 1.

the partitions start to have tighter diameters leading to better
approximation.

6.2.3 Effect of varying partitioning coverage

In this experiment, we study the impact of offline partition-
ing on the query response time and the approximation ratio
of SKETCHREFINE. We define the partitioning coverage
as the ratio between the number of partitioning attributes
and the number of query attributes. For each query, we test
partitionings created using: (a) exactly the query attributes
(coverage = 1), (b) proper subsets of the query attributes
(coverage < 1), and (c) proper supersets of the query at-
tributes (coverage > 1).

For each query, we report the effect of the partitioning
coverage on query runtime as the ratio of a query response
time over the same query’s response time when coverage is
one: a higher ratio (> 1) indicates slower response time and a
lower ratio (< 1) indicates a faster response time. Figure 9 re-
ports the results on the Galaxy and the TPC-H datasets. The
Galaxy dataset has many more numerical attributes than the
TPC-H dataset, allowing us to experiment with higher values
of coverage. The response time of SKETCHREFINE improves
on both datasets when the offline partitioning covers a super-
set of the query attributes, whereas it tends to increase when it
only considers a subset of the query attributes. The mean and
median approximation ratios are consistently low, indicating
that the quality of the packages returned by SKETCHREFINE

remains unaffected by the partitioning coverage.
These results demonstrate that SKETCHREFINE is ro-

bust to imperfect partitioning, which do not cater precisely
to the query attributes. Moreover, using a partitioning over
a superset of a query’s attributes typically leads to better
performance. The reason for this is twofold: First, higher cov-
erage achieves partitioning groups where tuples are similar
across all attributes pertinent to the query. Thus, the sketch
query uses better representatives and produces a more rele-
vant initial package, and the refine queries are more likely

feasible. Second, partitioning on more attributes can also
achieve smaller partitioning groups. As a result, this speeds
up the refine queries, and also reduces the diameter of each
group, with the potential of improving the approximation
ratio. This means that partitioning can be performed offline
using the union of the attributes of an anticipated workload,
or even using all the attributes of a relation.

6.2.4 Effect of varying ε

In our final set of experiments, we study the impact of differ-
ent approximation guarantees on the query response time and
the approximation ratio of SKETCHREFINE. We vary ε, the
approximation parameter, from higher values (looser approxi-
mation bound) to lower values (tighter approximation bound),
and enforce diameter limits according to Theorem 3. A looser
approximation bound can cause the algorithm to produce
package results with a worse objective value. More specif-
ically, ε = 0.4 guarantees approximation ratios not worse
than 1.4 for minimization queries and 1.67 for maximization
queries, and ε = 0.0125 guarantees approximation ratios not
worse than 1.0125 for minimization queries and 1.0127 for
maximization queries. Figure 10 presents the results on the
Galaxy workload, where ε varies from high values, on the
left-hand size of the x-axis, to lower values. When DIRECT

is able to produce a solution, we also report its running time
(horizontal line) as a baseline for comparison.

Enforcing stricter (lower) ε leads to an increase in the run-
ning time of SKETCHREFINE. This is expected, as the stricter
diameter bounds result in more partitions, and as we observed
in our partition threshold experiments (Section 6.2.2), having
more partitions can negatively impact the running time of
SKETCHREFINE. This trade-off between quality and runtime
performance is a known characteristic of most approximation
schemes [36].

Our results also show that enforcing even a loose ε, such
as 0.4, enables SKETCHREFINE to compute a result to all
the queries faster than DIRECT with no cost in quality, as the

Package queries: Efficient and scalable computation of high-order constraints 19

observed approximation ratios are always equal to 1. Notably,
this happens in all the queries, including those that showed
higher approximation ratio in the previous experiments where
the approximation guarantee was not enforced.

7 Parallelizing SKETCHREFINE

Our evaluation showed that SKETCHREFINE outperforms
DIRECT on both the Galaxy and the TPC-H datasets. Specifi-
cally, SKETCHREFINE has three important advantages: First,
it scales naturally to very large datasets, by breaking down
the problem into smaller, manageable subproblems, whose
solutions can be combined to form the final result. Second, it
provides flexible approximations with strong theoretical guar-
antees on the quality of the package results. Third, while our
current implementation employs ILP solvers, SKETCHRE-
FINE can use any arbitrary black-box algorithm to evaluate
the generated package subproblems, even solutions that work
entirely in main memory [16,36,14], and whose efficiency
drastically degrades with larger problem sizes. SKETCHRE-
FINE will offer the same efficiency gains and approximation
guarantees over the employed black-box algorithm.

However, there are two scenarios that can degrade
SKETCHREFINE’s performance. First, as we discussed in
Section 4.2.2, the worst-case running time of the algorithm
is exponential in the number of partitions, due to the
backtracking logic in the REFINE phase. The REFINE

algorithm may get caught in a sequence of promising refine
orderings that fail at their last step. Our evaluation showed
that this scenario is uncommon in practice, and the algorithm
was always able to quickly find a successful refine order for
the partitioning groups. Second, SKETCHREFINE achieves
most of its gains in the SKETCH phase, which identifies
the relevant partitions, reducing the work of REFINE. Thus,
the algorithm is susceptible to bad performance when
queries require tuples to be picked from a large number of
the partitions. We investigate this scenario in more detail,
starting with a motivating example from the Galaxy dataset.

Example 6 (Varied Red Galaxies) Similar to Example 2, an
astrophysicist is looking for rectangular regions of the night
sky that may contain previously unseen celestial objects. This
time, the scientist is specifically looking for galaxies that span
different brightness levels on the red color component.

In this example, the astrophysicist requires each galaxy
(package) to include red color components from the entire
red spectrum. We can encode this in PaQL by dividing the
red spectrum into ranges, and requiring the resulting package
to include at least one tuple from each range interval. Each
such constraint would be of the following form:

(SELECT COUNT(∗) FROM P

WHERE r BETWEEN rlb AND rub) >= 1

where r is the name of the red color component from the
Galaxy schema, and rlb and rub are the lower and upper
bounds of one of the range intervals. The query has one
such constraint for each range interval. Each such constraint
forces the result package to contain at least one tuple in the
specified r range.

If the dataset is partitioned on the red color component,
r, these constraints will force SKETCHREFINE to generate
and solve a subproblem for most of the partitions, causing
a substantial increase to its running time. In the worst case,
REFINE will need to operate on all partition groups, and its
performance can get as bad as DIRECT.

We implement the scenario of this example in our Galaxy
workload by partitioning the data on attribute r, generating
14 partitioning groups. We create constraints based on range
intervals that correspond to the partitioning on r. Then for
each Galaxy query, we generate a sequence of 14 queries, by
augmenting the query with more constraints on r, thus forc-
ing increasingly higher partition utilization. The first query
of the sequence only has one color constraint requiring at
least one tuple from a single partition, corresponding to the
lowest partition utilization (~10%). The last query of the
sequence has 14 color constraints, one for each partition,
requiring at least one tuple from each partition. This corre-
sponds to the highest partition utilization (100%). Queries
with more constraints on r will require the REFINE phase to
solve more partitions. We observe the impact of this work-
load on SKETCHREFINE’s performance in Figure 11: As
partition utilization increases (due to more constraints on
r), the runtime of greedy SKETCHREFINE increases, and
matches that of DIRECT when most partitions are needed. In
this experiment, the runtime of DIRECT also increases, as
the addition of the partition constraints makes each query
individually more complex.

Since SKETCHREFINE relies on solving several smaller
subproblems, a natural way to improve its performance is
by parallelizing the REFINE step. Unfortunately, the greedy
backtracking algorithm (Algorithm 2) requires incremental
refinements, always maintaining the feasibility of the inter-
mediate solutions. Each step in the algorithm makes a local
decision based on results of the previous decisions and their
order. Thus, solving the REFINE subproblems in parallel does
not guarantee that the overall package will be feasible.

In this section, we introduce a new iterative method for
performing the REFINE phase of SKETCHREFINE. The it-
erative algorithm has the following advantages over Algo-
rithm 2: (1) It allows partitions to be evaluated in parallel,
independently from each other; (2) It eliminates the need for
backtracking and, thus, its exponential worst-case; (3) It can
reach infeasibility faster than backtracking, while offering the
same false-infeasibility bounds; (4) It guarantees the same
approximation bounds. Figure 11 shows that parallel execu-
tion of our new iterative SKETCHREFINE leads to significant

20 M. Brucato et al.

Direct Greedy backtracking SketchRefine Iterative SketchRefine (Parallel)

T
im

e
(s

)

Q1

10% 40% 70% 100%
Partition utilization

101

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q2

10% 40% 70% 100%
Partition utilization

102

103

Approximation Ratio:
Mean: 14.40, Median: 14.23
Mean: 14.40, Median: 14.23

Q3

10% 40% 70% 100%
Partition utilization

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q4

10% 40% 70% 100%
Partition utilization

101

102

103

Approximation Ratio:
Mean: 1.14, Median: 1.00
Mean: 1.14, Median: 1.00

Q5

10% 40% 70% 100%
Partition utilization

101

102

103

Approximation Ratio:
Mean: 1.74, Median: 1.80
Mean: 1.74, Median: 1.80

Q6

10% 40% 70% 100%
Partition utilization

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q7

10% 40% 70% 100%
Partition utilization

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Fig. 11: Impact of increased partition utilization on SKETCHREFINE, on 30% of the Galaxy data. Partitioning is over
attribute r only, using τ = 10% and no diameter bounds. The performance of SKETCHREFINE degrades as partition
utilization increases, approaching the runtime of DIRECT. The runtime of DIRECT also increases, as the constraints
that force higher partition utilization increase the complexity of the query.

gains in performance, and avoids the degradation that greedy
SKETCHREFINE demonstrates in cases of high partition uti-
lization. We proceed to describe the new REFINE algorithm,
explain how it parallelizes, and demonstrate its scalability.

7.1 Iterative REFINE

The REFINE step of SKETCHREFINE processes the sketch
package pS to replace the representative tuples with tuples
from each partition. It does this by defining and solving ap-
propriate ILP problems within each partition (refinement).
The greedy backtracking implementation of REFINE (Algo-
rithm 2) performs refinements one at a time, and requires
each refinement to yield a feasible package for the original
query; if a refinement does not, the algorithm backtracks.
We now present an alternative strategy for the REFINE step
that relaxes this requirement until a tuple solution for ev-
ery partitioning group is found. Specifically, iterative RE-
FINE performs refinements independently on each partition,
modifying the sketch package based on all the successful
refinements, and repeating any failed ones using the new re-
vised sketch package. Only after all partitions are solved, the
algorithm ensures that feasibility of the resulting package. Al-
gorithm 3 details the procedure, which works in two phases:

Phase 1: Iterative refinements
The first phase of the algorithm (lines 2–19) performs re-
finements on all unsolved partitions (S) iteratively. At each
iteration, for each unsolved partition, the algorithm solves
an ILP (constructed as in Section 4.2.2) to replace the repre-
sentative tuples with tuples from the partition. The algorithm
updates the sketch package (pS) based on the refinements
(line 15). This process repeats while there are still unsolved
partitions, i.e., partitions that failed to produce a feasible so-
lution in previous iterations (line 3). The refinement queries
Qi(pS) in the new iterations will be different from their ear-
lier versions, as the constraints on each refine query depend
on pS, which has been modified by the previous iterations.
Phase 1 fails (line 19) if, during an iteration, none of the

Algorithm 3 Iterative REFINE

input:
– Q: the package query to be evaluated
– P= {(G1, t̃1), . . . ,(Gm, t̃m)}: partitioning groups
– S: partitioning groups yet to be refined (initially S= P)
– pS: the refining package (initially the result of SKETCH)

output: a feasible package containing only tuples, or failure
1: procedure REFINE(Q, P, pS)
2: . Phase 1: Iterative refinements
3: while S 6= /0 do
4: . Solve all unsolved groups S independently
5: S′ = S

6: for all (Gi, t̃i) ∈ S do
7: . Skip groups that have no representative in pS

8: if t̃i ∈ pS then
9: pi← DIRECT(Qi(pS))

10: if Qi(pS) is feasible then
11: S′ = S′ \{(Gi, t̃i)}
12: if S′ ⊂ S then
13: . Combine independent solutions into pS
14: for all (Gi, t̃i) ∈ S do
15: pS← pS \{t̃i}∪ pi

16: S← S′

17: else if S′ = S then
18: . No progress could be made
19: return failure
20: . Phase 2: Feasibility adjustment
21: if pS is infeasible for Q then
22: . Attempt re-refining groups having at least one tuple
23: for all (Gi, t̃i) ∈ P s.t. pS∩Gi 6= /0 do
24: pi← DIRECT(Qi(pS), pS)
25: if Qi(pS) is feasible then
26: p← pS \{t̃i}∪ pi . Invariant: p is feasible for Q
27: return p
28: return failure
29: return pS

partition groups can be solved: In this case, S remains un-
changed, and the algorithm cannot make progress towards
the completion of the package.

During this phase, the algorithm does not check whether
pS is a feasible solution to the overall query. Rather, the
objective of this phase is to produce feasible solutions for
each of the partition groups.

Package queries: Efficient and scalable computation of high-order constraints 21

Phase 2: Feasibility adjustment
If Phase 1 concludes successfully, the algorithm enters Phase
2 (lines 20–29) to verify whether pS is a feasible solution
to the overall query and attempt a correction if it is not. If
pS is not a feasible solution, the algorithm tries one more
refine round of all partitions based on the current pS. If any
of the refine queries succeeds in this round, then the new,
refined pS is guaranteed to be a feasible solution and the
algorithm returns it. If all refinement queries are infeasible,
the algorithm fails. Thus, iterative REFINE may fail in two
cases: (1) if all refining queries fail in one iteration of Phase
1; or (2) if the refined sketch package pS is infeasible and
unfixable in Phase 2.

Run time complexity
We denote with T (τ) the time taken by the solver to solve
a problem of size τ, and express the time complexity of the
refine procedure as a function of T (τ) and m, the number of
partitioning groups. The best case for Algorithm 3 is that all
refine queries succeed in the first iteration of Phase 1 and, in
Phase 2, the refined pS is already a feasible solution. In this
case, the algorithm makes up to m calls to the solver. In the
worst case, only one refine query succeeds in each iteration
of Phase 1, the refined package pS is not a feasible solution
to the overall query, and only the last attempt of Phase 2
succeeds in rendering pS feasible. In this case, Algorithm 3
makes up to m(m+1)

2 +m calls to the solver (O(T (τ)m2)).

Comparison with greedy backtracking REFINE

However, in sequential settings greedy backtracking can out-
perform iterative REFINE in practice. Specifically, if the sub-
problems can be solved independently of each other, but
fail when combined, iterative REFINE requires extra steps
in Phase 2 to adjust the solution. On the other hand, greedy
backtracking would terminate as soon as all subproblems
are solved, as it always maintains feasible solutions. With
infeasible groups, iterative REFINE may also require several
Phase 1 iterations, while greedy backtracking would immedi-
ately backtrack at the first infeasible group. This means that
Algorithm 2 is likely to beat Algorithm 3 in harder problems,
which have few feasible solutions.

7.2 Parallelizing iterative REFINE

Iterative REFINE is naturally amenable to parallelization,
since all refinement problems are solved independently from
each other. In particular, during Phase 1, the algorithm solves
groups independently without ensuring the feasibility of the
overall package. Therefore, all the refine queries in each
iteration of Phase 1 can be solved in parallel, and their solu-
tions can be combined by a central node at the end of every
iteration. During Phase 2, all the refine queries are also in-
dependent because the algorithm can stop if any of them

succeeds. Thus, all refine queries of Phase 2 can also be ex-
ecuted in parallel, and if any succeeds, the other ones can
be immediately terminated. A central node dispatches the
refine queries to be solved at each iteration to the parallel
worker nodes, and combines their result into pS, the refining
sketch package. Thus, every worker node is responsible for
a different partitioning group. If there are more partitioning
groups than workers, the load can be easily balanced among
the workers by assigning them to an equal number of groups.

7.3 Experimental evaluation of parallel SKETCHREFINE

We evaluate the scalability and effectiveness of parallel
SKETCHREFINE using a variation of the queries of our
Galaxy workload based on Example 6. Specifically, we parti-
tion our data on the red color component attribute, r, with τ =

10% of the original dataset size and no diameter conditions,
and we modify the Galaxy queries to include cardinality
constraints on ranges of r. Our partitioning on r generates 14
groups, and the runtime improvements that we report in this
section are achievable with 14 parallel worker nodes (one for
each partitioning group). In each experiment, we measure
the running time and the approximation ratio (described in
Section 6.1) of the algorithms for increasing dataset sizes,
comparing DIRECT with two versions of SKETCHREFINE:
one that uses greedy backtracking REFINE (Algorithm 2),
and one that uses iterative REFINE (Algorithm 3).

In our first experiment, we change the number of cardi-
nality constraints on ranges of r for each query: the more
constraints, the more partitions SKETCHREFINE will need to
explore. As we have seen, the performance of SKETCHRE-
FINE with greedy backtracking degrades as partition utiliza-
tion increases (Figure 11). In contrast, we observe that par-
allel iterative SKETCHREFINE maintains consistently better
performance than DIRECT.

For our second experiment, we pick the query workload
with the highest partition utilization (100%), which requires
all of the partitions to be refined. Figure 12 reports the re-
sults. All queries show similar performance because they all
share the same 14 cardinality constraints on r. Both of the
SKETCHREFINE versions scale to millions of tuples, whereas
DIRECT fails in many of the queries when the dataset gets too
big. Here, DIRECT fails for the same reasons as our earlier ex-
periments in Section 6.2.1. In all the cases in which DIRECT

succeeds, as the dataset size increases, greedy backtracking
SKETCHREFINE shows the same run-time performance as
DIRECT. In fact, requiring galaxies that span all of the red
color ranges requires tuples to be picked from each partition,
which corresponds to the worst case for greedy backtracking.
On the other hand, parallel SKETCHREFINE is able to always
find an answer in about an order of magnitude less time than
greedy backtracking and DIRECT. This happens because the
algorithm is able to parallelize all the necessary refinements.

22 M. Brucato et al.

Direct Greedy backtracking SketchRefine Iterative SketchRefine (Parallel)

T
im

e
(s

)

Q1

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 1.02, Median: 1.02
Mean: 1.02, Median: 1.02

Q2

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 7.12, Median: 7.13
Mean: 7.12, Median: 7.13

Q3

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q4

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q5

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 2.00, Median: 2.00
Mean: 2.00, Median: 2.00

Q6

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 1.00, Median: 1.00
Mean: 1.00, Median: 1.00

Q7

10% 40% 70% 100%
Dataset size

102

103

Approximation Ratio:
Mean: 1.34, Median: 1.34
Mean: 1.00, Median: 1.00

Fig. 12: Scalability of parallel SKETCHREFINE compared to greedy backtracking SKETCHREFINE and DIRECT on
the varied red Galaxy workload. SKETCHREFINE uses partitioning computed on attribute r, τ= 10%, and no diameter
condition. The running time of greedy backtracking SKETCHREFINE and DIRECT are equal as all partitions need
to be refined (worst case of greedy backtracking). Parallel SKETCHREFINE scales up to nicely in all cases, and runs
about an order of magnitude faster than both DIRECT and greedy backtracking. The approximation ratios of the two
algorithms are both generally low, even though the partitioning is constructed without quality guarantees in place.

In this set of experiments, we did not enforce approxima-
tion guarantees, so the algorithms can potentially produce bad
solutions. However, our results show that this happens rarely,
and the approximation ratios of both of the SKETCHREFINE

algorithms are generally very low (close to one). One ex-
ception is query Q2, for which SKETCHREFINE produces a
7-factor approximation. Finally, the approximation quality of
parallel iterative SKETCHREFINE is equal (queries Q1–Q6)
or better (Q7) than greedy backtracking. This shows that the
gains obtained by parallelizing SKETCHREFINE do not come
at the cost of quality and, in some cases, can also produce
better solutions.

8 Incremental package evaluation

At the core of our package evaluation methods, DIRECT is
used as a black-box evaluation strategy to solve each subprob-
lem. Treating the subproblem evaluation as a black box is a
powerful abstraction: it allows our SKETCHREFINE strate-
gies to benefit from using alternative evaluation algorithms
at this core, while the results of our theoretical analysis still
hold (Section 5). In this section, we explore the potential of
improving the performance of DIRECT directly, thus, slightly
“lifting the lid” on this black box and exploiting some of
its logic. Specifically, we will study the impact of precon-
ditioning, i.e., an initial assignment of the variables, to the
ILP solver’s performance. The intuition is that providing the
solver with a “good” starting package can reduce the search
space and allow the solver to reach a solution faster.

In this paper, we do not present a particular method for
identifying appropriate starting packages; our goal is to eval-
uate through a preliminary empirical analysis whether such a
method can improve the efficiency of package evaluation in
a meaningful way. Our analysis explores the following ques-
tions: (1) How does a starting package solution impact the
runtime of DIRECT? (2) Does the feasibility of the starting
package make a difference?

FEASIBLESTART INFEASIBLESTART
Sp

ee
du

p

(a)

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Queries

1.0

2.5

(b)

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Queries

1.0

6.5

12.0

(c)

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Queries

1.0

2.5

4.0

Fig. 13: Average speedup provided by FEASIBLESTART

(green bars) and INFEASIBLESTART (red bars) compared
to NOSTART, across different query sequences and dif-
ferent methodologies for sequence creation. (a) All con-
straints, fixed µ; (b) One constraint, fixed µ;(c) Random
constraints, random µ. The results show that starting
packages do not always improve the performance, but
feasible starting packages generally offer better speedup
than infeasible ones.

We evaluate the effect of seeding the solver with two
types of starting solutions: packages that already satisfy the
query’s constraints (feasible), and packages that do not (infea-
sible). We use the Galaxy workload to construct sequences of
queries with increasing strictness. Given a query Q, we con-
struct the sequence (Q1, . . . ,Qr), such that Qi+1 has stricter
constraints than Qi: if Qi has a constraint SUM(attr)≥ 2 and
the optimal solution to Qi has a value 2.2 for this sum, then
this constraint for Qi+1 becomes SUM(attr)≥ 2.2+µ, for a
small constant µ > 0. We construct three sequences for each
query as follows:
1. we modify all constraints at every step of the sequence

with a fixed µ,
2. we modify only one constraint at a time with a fixed µ,
3. we modify a random set of constraints with a random µ.

For all sequences (Q1, . . . ,Qr), the solution for Qi is fea-
sible for Qi−1, but the solution for Qi−1 is not feasible for
Qi. We construct sequences of length up to 20 for each of
the 7 queries in the Galaxy workload. Sequences can have

Package queries: Efficient and scalable computation of high-order constraints 23

fewer than 20 queries if constraint changes cause a query to
become infeasible. We execute each query Qi in a sequence
using DIRECT in three ways:
NOSTART: Providing no starting solution.
FEASIBLESTART: Preconditioning with the optimal solu-

tion to Qi+1, which is a feasible package for Qi.
INFEASIBLESTART: Preconditioning with the optimal solu-

tion to Qi−1, which is an infeasible package for Qi.
We measure the runtime speedup of preconditioning

as the ratio of the running time of NOSTART over FEASI-
BLESTART and INFEASIBLESTART, for feasible and infeasi-
ble starting packages, respectively. A speedup of 1 means that
preconditioning has no effect on the running time. A speedup
< 1 means that preconditioning led to worse performance
and a speedup > 1 means that preconditioning improved
the performance. Figure 13 shows the average speedup of
FEASIBLESTART and INFEASIBLESTART across each query
sequence, for the three types of generated sequences. Our re-
sults show that preconditioning does not consistently improve
the performance of all queries. In fact, seeding the solver with
an infeasible package can frequently lead to worse perfor-
mance. On the other hand, FEASIBLESTART rarely hurts
runtime performance, and can often help significantly—as
much as 12x improvement in our experiment. This contrast
between FEASIBLESTART and INFEASIBLESTART is intu-
itive: DIRECT needs to derive a solution that is (1) feasible
and (2) has optimal objective value, so a seed that already
satisfies the first condition is more likely to be useful.

Overall, the results of our empirical analysis indicate that
preconditioning is a promising strategy for improving pack-
age query performance that merits further study. We offer
additional discussion on this research direction in Section 10.

9 Related work

Package recommendations. Package or set-based recom-
mendation systems [37,38] are closely related to package
queries. A package recommendation system presents users
with interesting sets of items that satisfy some global condi-
tions. These systems are usually driven by specific applica-
tion scenarios. For instance, in the CourseRank [31] system,
the items to be recommended are university courses, and
the types of constraints are course-specific (e.g., prerequi-
sites, incompatibilities, etc.). Satellite packages [1] are sets
of items, such as smartphone accessories, that are compatible
with a “central” item, such as a smartphone. Other related
problems in the area of package recommendations are team
formation [26,2], and recommendation of vacation and travel
packages [9]. Queries expressible in these frameworks are
also expressible in PaQL, but the opposite does not hold. The
complexity of set-based package recommendation problems
is studied in [10], where the authors show that the data com-
plexity of computing top-k packages [39] with a conjunctive
query language is FPNP-complete.

Semantic window queries. Packages are also related to se-
mantic windows [21]. A semantic window defines a contigu-
ous subset of a grid-partitioned space with certain global
properties. For instance, astronomers can partition the night
sky into a grid, and look for regions of the sky whose overal
brightness is above a specific threshold. If the grid cells are
precomputed and stored into an input relation, these queries
can be expressed in PaQL by adding a global constraint (be-
sides the brightness requirement) that ensures that all cells in
a package must form a contiguous region in the grid space.
Packages, however, are more general than semantic windows
because they allow regions to be non-contiguous, or to con-
tain gaps. Moreover, package queries also allow optimiza-
tion criteria, which are not expressible in semantic window
queries. A recent extension to methods for answering seman-
tic window queries is Searchlight [22], which expresses these
queries in the form of constraint programs. Searchlight uses
in-memory synopses to quickly estimate aggregate values of
contiguous regions. However, it does not support synopses
for non-contiguous regions, and thus it cannot solve arbitrary
package queries.

Iceberg queries. Iceberg queries are SQL group-by aggre-
gation queries with a highly selective HAVING clause [12,
29,25]. Package queries are much more powerful than ice-
berg queries, which cannot return packages of items, (they
can only return group-by aggregates), and cannot express
optimization objectives.

How-to queries. Package queries are related to how-to
queries [27], as they both use an ILP formulation to translate
the original queries. However, there are several major
differences between package queries and how-to queries:
package queries specify tuple collections, whereas how-to
queries specify updates to underlying datasets; package
queries allow a tuple to appear multiple times in a package
result, while how-to queries do not model repetitions;
PaQL is SQL-based whereas how-to queries use a variant
of Datalog; PaQL supports arbitrary Boolean formulas in
the SUCH THAT clause, whereas how-to queries can only
express conjunctive conditions.

Answer set programming. In answer set programming
(ASP) [5,14], logic programs follow a Datalog-like syntax
with extended functionalities. ASP, extended with arithmetic,
is able to express package queries, and packages can be seen
as stable models of ASP programs. While ASP can express
packages, SQL-based PaQL offers a more natural extension
for most relational systems. More importantly, state-of-the-
art ASP solvers, like Clingo [14] from the Potassco bundle,
are not yet able to scale package computation to reasonable
data sizes. We observed these shortcomings by running ASP
problems for our Galaxy queries: the ASP solver did not
scale to more than a few dozens of tuples, while ILP solvers
scale up to millions of tuples.

24 M. Brucato et al.

Constraint query languages. The principal idea of con-
straint query languages (CQL) [23] is that a tuple can be gen-
eralized as a conjunction of constraints over variables. This
principle is very general and creates connections between
declarative database languages and constraint programming.
However, prior work focused on expressing constraints over
tuple values, rather than over sets of tuples. In this light,
PaQL follows a similar approach to CQL by embedding in
a declarative query language methods that handle higher-
order constraints. However, our package query engine design
allows for the direct use of ILP solvers as black-box com-
ponents, automatically transforming problems and solutions
from one domain to the other. In contrast, CQL needs to
appropriately adapt the algorithms themselves between the
two domains, and existing literature does not provide this
adaptation for the constraint types in PaQL.

ILP approximations. There exists a large body of research
in approximation algorithms for problems that can be mod-
eled as integer linear programs. A typical approach is linear
programming relaxation [36] in which the integrality con-
straints are dropped and variables are free to take on real
values. These methods are usually coupled with rounding
techniques that transform the real solutions to integer solu-
tions with provable approximation bounds. None of these
methods, however, can solve package queries on a large
scale because they all assume that the LP solver is used
on the entire problem. Another common approach to ap-
proximate a solution to an ILP problem is the primal-dual
method [16]. All primal-dual algorithms, however, need to
keep track of all primal and dual variables and the coeffi-
cient matrix, which means that none of these methods can
be employed on large datasets. On the other hand, rounding
techniques and primal-dual algorithms could potentially ben-
efit from the SKETCHREFINE algorithm to break down their
complexity on very large datasets.

Approximations to subclasses of package queries. Like
package queries, optimization under parametric aggregation
constraints (OPAC) queries [17] can construct sets of tuples
that collectively satisfy summation constraints. However, ex-
isting solutions to OPAC queries have several shortcomings:
(1) they do not handle tuple repetitions; (2) they only ad-
dress multi-attribute knapsack queries, a subclass of package
queries where all global constraints are of the form SUM()

≤ c, with a MAXIMIZE SUM() objective criterion; (3) they
may return infeasible packages; (4) they are conceptually dif-
ferent from SKETCHREFINE, as they generate approximate
solutions in a pre-processing step, and packages are simply
retrieved at query time using a multi-dimensional index. In
contrast, SKETCHREFINE does not require pre-computation
of packages. Package queries also encompass submodular
optimization queries, whose recent approximate solutions
use greedy distributed algorithms [28].

10 Conclusions and discussion

In this paper, we introduced a complete system that supports
the specification and efficient evaluation of package queries.
We presented PaQL, a declarative extension to SQL, and the-
oretically established its expressiveness, and we developed a
flexible approximation method, with strong theoretical guar-
antees, for the evaluation of PaQL queries on large-scale
datasets. Our experiments on real-world and benchmark data
demonstrate that our scalable evaluation strategy is effective
and efficient over varied data sizes and query workloads, and
remains robust under suboptimal conditions, parameter set-
tings, and queries that require most of the partitions to be
accessed at query time. We extended our SKETCHREFINE

method to allow for effective parallelization, and we demon-
strated that it maintains good performance in adverse query
scenarios. Finally, we presented an empirical study showing
promise for using preconditioning to support incremental
package evaluation. We proceed to discuss some potential
research directions in package query evaluation.

Handling joins. In this paper we assumed that, in the pres-
ence of joins, the system simply evaluates and materializes
the join result before applying the package-specific transfor-
mations. However, the materialization of the join result is
not always necessary: DIRECT generates variables through
a single sequential scan of the join result, and thus the join
tuples can be pipelined into the ILP generation without be-
ing materialized. However, not materializing the join results
means that some of the join tuples will need to be recom-
puted to populate the solution package. Therefore, there is
a space-time trade-off in the consideration of materializing
the join. Further, this trade-off can be improved with hybrid,
system-level solutions, such as storing the record IDs of join-
ing tuples to enable faster access during package generation.

Incremental evaluation. Our empirical study of precon-
ditioning (Section 8) indicates that providing feasible
packages as starting solutions can significantly speed up the
computation of DIRECT. A system could take advantage of
this in several ways. First, the system can maintain results of
past queries in a solution pool that can be searched to identify
good candidate starting packages for newly submitted
queries. Second, it may be possible to construct simple
feasible packages by executing a simplified package query,
or even a set of traditional SQL queries. Furthermore, incre-
mental evaluation can also directly benefit iterative query
refinement (such as in data exploration), as results to previous
queries are natural starting packages for subsequent ones.

Top-k package queries. In this paper, we focused on produc-
ing the single optimal result for a package query with an opti-
mization objective. Our algorithms, DIRECT and SKETCHRE-
FINE, are not designed to efficiently produce top-k packages,
as ILP solvers typically return one solution. A naïve way
of producing top-k results is to return one result at a time,

Package queries: Efficient and scalable computation of high-order constraints 25

and modify the query in each iteration, so as to exclude the
previous result. However, such an approach is inefficient. Effi-
cient top-k packages is an important and interesting research
direction, which may benefit from solver-specific solutions.

Acknowledgements This material is based upon work supported
by the National Science Foundation under grants IIS-1420941, IIS-
1421322, and IIS-1453543. This is a pre-print of an article published in
the VLDB Journal. The final authenticated version is available online
at: https://doi.org/10.1007/s00778-017-0483-4.

References

1. Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam
Das, and Cong Yu. Constructing and exploring composite items.
In SIGMOD, pages 843–854, 2010.

2. Adil Baykasoglu, Turkay Dereli, and Sena Das. Project team
selection using fuzzy optimization approach. Cybernetic Systems,
38(2):155–185, 2007.

3. Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–
517, 1975.

4. Johannes Bisschop. AIMMS Optimization Modeling. Paragon
Decision Technology, 2006.

5. Piero Bonatti, Francesco Calimeri, Nicola Leone, and Francesco
Ricca. A 25-year perspective on logic programming. chapter
Answer Set Programming, pages 159–182. Springer-Verlag, Berlin,
Heidelberg, 2010.

6. Matteo Brucato, Juan Felipe Beltran, Azza Abouzied, and Alexan-
dra Meliou. Scalable package queries in relational database systems.
PVLDB, 9(7):576–587, 2016.

7. Matteo Brucato, Rahul Ramakrishna, Azza Abouzied, and Alexan-
dra Meliou. PackageBuilder: From tuples to packages. PVLDB,
7(13):1593–1596, 2014.

8. William Cook and M Hartmann. On the complexity of branch
and cut methods for the traveling salesman problem. Polyhedral
Combinatorics, 1:75–82, 1990.

9. Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Na-
dav Golbandi, Ronny Lempel, and Cong Yu. Automatic construc-
tion of travel itineraries using social breadcrumbs. In HyperText,
pages 35–44, 2010.

10. Ting Deng, Wenfei Fan, and Floris Geerts. On the complexity of
package recommendation problems. In PODS, pages 261–272,
2012.

11. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, pages 226–231, 1996.

12. Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev
Motwani, and Jeffrey D. Ullman. Computing iceberg queries effi-
ciently. In VLDB’98, Proceedings of 24rd International Conference
on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, pages 299–310, 1998.

13. Raphael A. Finkel and Jon Louis Bentley. Quad trees a data struc-
ture for retrieval on composite keys. Acta informatica, 4(1):1–9,
1974.

14. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo =
ASP + control: Preliminary report. In M. Leuschel and T. Schri-
jvers, editors, Technical Communications of the Thirtieth Inter-
national Conference on Logic Programming (ICLP’14), volume
arXiv:1405.3694v1, 2014. Theory and Practice of Logic Program-
ming, Online Supplement.

15. GNU Bison. https://www.gnu.org/software/bison/.
16. Michel X Goemans and David P Williamson. The primal-dual

method for approximation algorithms and its application to network
design problems. Approximation algorithms for NP-hard problems,
pages 144–191, 1997.

17. Sudipto Guha, Dimitrios Gunopulos, Nick Koudas, Divesh Srivas-
tava, and Michail Vlachos. Efficient approximation of optimization
queries under parametric aggregation constraints. In VLDB, pages
778–789, 2003.

18. John A Hartigan and Manchek A Wong. Algorithm as 136: A
k-means clustering algorithm. Applied statistics, pages 100–108,
1979.

19. Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical association,
58(301):13–30, 1963.

20. IBM CPLEX Optimization Studio. http://www.ibm.com/
software/commerce/optimization/cplex-optimizer/.

21. Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. Interactive
data exploration using semantic windows. In SIGMOD, pages
505–516, 2014.

22. Alexander Kalinin, Ugur Çetintemel, and Stanley B. Zdonik.
Searchlight: Enabling integrated search and exploration over large
multidimensional data. PVLDB, 8(10):1094–1105, 2015.

23. PC Kanellakis, GM Kuper, and PZ Revesz. Constraint query lan-
guages. Journal of Computer and System Sciences, 1(51):26–52,
1995.

24. Leonard Kaufman and Peter J Rousseeuw. Finding groups in data:
an introduction to cluster analysis, volume 344. John Wiley &
Sons, 2009.

25. Marc Laporte, Noel Novelli, Rosine Cicchetti, and Lotfi Lakhal.
Computing full and iceberg datacubes using partitions. In Founda-
tions of Intelligent Systems, 13th International Symposium, ISMIS
2002, Lyon, France, June 27-29, 2002, Proceedings, pages 244–
254, 2002.

26. Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team
of experts in social networks. In SIGKDD, pages 467–476, 2009.

27. Alexandra Meliou and Dan Suciu. Tiresias: The database oracle
for how-to queries. In SIGMOD, pages 337–348, 2012.

28. Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas
Krause. Distributed submodular maximization: Identifying repre-
sentative elements in massive data. In NIPS, 2013.

29. Raymond T. Ng, Alan S. Wagner, and Yu Yin. Iceberg-cube compu-
tation with PC clusters. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara,
CA, USA, May 21-24, 2001, pages 25–36, 2001.

30. Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algo-
rithm for the resolution of large-scale symmetric traveling salesman
problems. SIAM Review, 33(1):60–100, 1991.

31. Aditya G. Parameswaran, Petros Venetis, and Hector Garcia-
Molina. Recommendation systems with complex constraints: A
course recommendation perspective. ACM TOIS, 29(4):1–33, 2011.

32. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

33. Florian Pinel and Lav R. Varshney. Computational creativity for
culinary recipes. In CHI, pages 439–442, 2014.

34. The Sloan Digital Sky Survey. http://www.sdss.org/.
35. The TPC-H Benchmark. http://www.tpc.org/tpch/.
36. David P Williamson and David B Shmoys. The design of approxi-

mation algorithms. Cambridge University Press, 2011.
37. Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Breaking out

of the box of recommendations: from items to packages. In Pro-
ceedings of the 2010 ACM Conference on Recommender Systems,
RecSys 2010, Barcelona, Spain, September 26-30, 2010, pages
151–158, 2010.

38. Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Composite
recommendations: from items to packages. Frontiers of Computer
Science, 6(3):264–277, 2012.

39. Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Generating
top-k packages via preference elicitation. PVLDB, 7(14):1941–
1952, 2014.

https://doi.org/10.1007/s00778-017-0483-4
https://www.gnu.org/software/bison/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.sdss.org/
http://www.tpc.org/tpch/

26 M. Brucato et al.

Appendix: Additional material

In this Appendix, we provide additional supplementary
material to the paper “Package queries: Efficient and scal-
able computation of high-order constraints”. We discuss
ASP encoding for package queries and show an example of
this encoding, we expand the discussion on hybrid SKETCH,
we provide details on the queries of our experimental work-
load, we present experimental results that demonstrate the
performance trade-off between the two REFINE algorithms,
and include some additional results on our study of solver
preconditioning.

1 Expressing package queries with ASP

An answer set program [5] (ASP) is given by a set of rules
of the form head:-body, each of which is logically equiv-
alent to an implication head ← body. A fact is a rule de-
void of a body, used to express input data. ASP extended
with arithmetic can express package queries. Each input tu-
ple ti = (idi,vi1, . . . ,vik) is encoded as a fact of the form
tuple(idi,vi1,...,vik), and the dataset of n tuples as a
fact tuples(id1,...,idn). The query from Example 1 can
be expressed in ASP (using the Clingo system [14]) as:

1: multiplicity(0..1).
2: 1 { package(T, N) : multiplicity(N) } 1 :- tuples(T).
3: #sum{N,T : package(T, N) : tuples(T),

multiplicity(N)} = 3.
4: 2 <= #sum{(Kcal*N),T : package(T, N) :

tuple(T,Kcal,. . .), multiplicity(N)} <= 2.5.
5: #minimize {(SaturatedFat*N),T : package(T, N),

tuple(T,. . .,SaturatedFat), multiplicity(N)}.

Lines 1 and 2 ensure that each tuple in an output pack-
age can either be picked (multiplicity(1)) or not
(multiplicity(0)). Line 3 expresses the cardinality
requirement (three recipes), line 4 the sum constraint on kcal,
and line 5 the objective criterion. The benefit of this encoding
is its Datalog-like declarativeness. However, as we discuss in
the related work section, state-of-the-art ASP solvers are not
yet capable of scaling up package computation.

2 Hybrid SKETCH

Recall, from Section 4.2.1, that the SKETCH query, Q(R̃),
creates an initial package solution by selecting representative
tuples that satisfy the original query constraints:

Q(R̃):SELECT PACKAGE(∗) AS pS
FROM R̃

WHERE R̃.gluten = ‘free’
SUCH THAT

COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid = 1)≤ |G1|
AND . . .
(SELECT COUNT(∗) FROM pS WHERE gid = m)≤ |Gm|

MINIMIZE SUM(pS.sat_fat)

A REFINE query Qi(pS) for group Gi, presented in Sec-
tion 4.2.2, selects tuples from Gi to replace the representa-
tives for Gi in the current solution:

Qi(pS):SELECT PACKAGE(∗) AS pi
FROM Gi REPEAT 0
WHERE Gi.gluten = ‘free’
SUCH THAT
COUNT(pi.∗) + COUNT(p̄i.∗) = 3 AND
SUM(pi.kcal) + SUM(p̄i.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(pi.sat_fat)

An hybrid SKETCH query for group Gi, Q(R̃)i, combines
the SKETCH query with the REFINE query for Gi into one
single query to be executed in place of the SKETCH query.
The hybrid query selects tuples from Gi and, at the same time,
representatives from all other groups:

Q(R̃)i: SELECT PACKAGE(∗) AS pS
FROM (SELECT ∗ FROM Gi UNION

SELECT ∗ FROM R̃ WHERE gid 6= i)
WHERE gluten = ‘free’
SUCH THAT

COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid = 1≤ |G1|
AND . . .
(SELECT COUNT(∗) FROM pS WHERE gid = m)≤ |Gm|
AND
(SELECT COUNT(∗) FROM pS WHERE gid = i)≤ 1

MINIMIZE SUM(pS.sat_fat)

Hybrid SKETCH is a simple heuristic that can prevent
false infeasibility from occurring in three cases:

1. If the original sketch query, Q(R̃), is infeasible due to a
bad representative from one of the groups, SKETCHRE-
FINE would erroneously report the query as infeasible.
The hybrid SKETCH query over that group would not use
the bad representatives. It would rather try to construct
a package using the actual tuples from that group. This
may render the query feasible and allow SKETCHREFINE

to proceed.
2. A REFINE query for a particular group may fail in a

later stage. This is usually caused by choices made on
previous REFINE steps. An hybrid query would try to
find a solution for that group earlier on, when choices are
not yet made for the other groups. This can improve the
chances to find a tuple solution for that group.

3. Finally, a failing REFINE query for a particular group may
be avoided altogether if no representatives get picked for
that group. While the original SKETCH query could pick
representatives for that group, the hybrid query may not.

3 Galaxy and TPC-H PaQL workloads

For our experiments, we constructed a workload of seven
feasible package queries for each of the Galaxy and TPC-H
datasets, using existing SQL queries, originally designed for
these datasets. We show all the queries in our workload in
Figure 14.

Package queries: Efficient and scalable computation of high-order constraints 27

Galaxy PaQL workload TPC-H PaQL workload
Q1 : SELECT PACKAGE(∗) AS P

FROM Galaxy REPEAT 0
SUCH THAT SUM(extinction_r)≥ 0.875
AND SUM(r)≤ 220
AND COUNT(∗) BETWEEN 5 AND 10
MAXIMIZE COUNT(∗)

Q2 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(cmodelmag_g) BETWEEN 90 AND 190
AND SUM(ra) BETWEEN 990 AND 1800
AND COUNT(∗) BETWEEN 5 AND 10
MINIMIZE SUM(dec)

Q3 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(cx)≥ 0.466
AND SUM(cy)≤ 0.689
AND COUNT(∗) BETWEEN 5 AND 10
MINIMIZE SUM(cx)

Q4 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(petrorad_r)≤ 180
AND COUNT(∗) BETWEEN 5 AND 10
MINIMIZE SUM(colc_u)

Q5 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(petrorad_i)≥ 75
AND COUNT(∗) BETWEEN 5 AND 10
MINIMIZE COUNT(∗)

Q6 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(petromag_i)≥ 87.5
AND SUM(petromag_r)≥ 77.5
AND SUM(i)≥ 0.001
AND SUM(r)≥ 0.001
AND SUM(g)≥ 0.001
AND COUNT(∗) BETWEEN 5 AND 10
MINIMIZE SUM(petromag_r)

Q7 : SELECT PACKAGE(∗) AS P
FROM Galaxy REPEAT 0
SUCH THAT SUM(ra) BETWEEN 900 AND 1810
AND SUM(dec) BETWEEN −5 AND 10
AND SUM(r)≤ 217.5
AND COUNT(∗) BETWEEN 5 AND 10
MAXIMIZE SUM(r)

Q1 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(sum_base_price)≤ 15M
AND SUM(sum_disc_price)≤ 45M
AND SUM(sum_charge)≤ 96M
AND SUM(avg_qty)≤ 50.36
AND SUM(avg_price)≤ 69K
AND SUM(avg_disc)≤ 0.11
AND SUM(sum_qty)≤ 78K
AND COUNT(∗)≥ 1
MAXIMIZE SUM(count_order)

Q2 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(p_size)≤ 8
AND COUNT(∗)≥ 1
MINIMIZE SUM(ps_min_supplycost)

Q3 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(revenue)≥ 414K
AND COUNT(∗)≥ 1
MINIMIZE COUNT(∗)

Q4 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(o_totalprice)≤ 454K
AND SUM(o_shippriority)≥ 0
AND COUNT(∗)≥ 1
MINIMIZE COUNT(∗)

Q5 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(revenue)≥ 720K
AND COUNT(∗)≥ 1
MINIMIZE COUNT(∗)

Q6 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT SUM(revenue)≥ 73K
AND SUM(l_quantity)≤ 110.95
AND COUNT(∗)≥ 1
MINIMIZE COUNT(∗)

Q7 : SELECT PACKAGE(∗) AS P
FROM Tpch REPEAT 0
SUCH THAT COUNT(∗)≤ 2.667e-6∗
(SELECT COUNT(∗) FROM Tpch)
AND COUNT(∗)≥ 1
MAXIMIZE SUM(revenue)

Fig. 14: PaQL queries constructed for the Galaxy and TPC-H workloads.

Direct Greedy backtracking SketchRefine Iterative SketchRefine (Parallel)

T
im

e
(s

)

Q2

10% 40% 70% 100%
Dataset size

101

102

103

104

Approximation Ratio:
Mean: 1.07, Median: 1.07
Mean: 1.07, Median: 1.07

Fig. 15: Tradeoff between greedy-backtracking and iter-
ative REFINE on query Q2 from the Galaxy workload, us-
ing 1.6% of the dataset size as partitioning size thresh-
old, and without enforcing diameter conditions. The re-
sults show that greedy backtracking is faster than itera-
tive REFINE in several cases.

4 Performance trade-off between greedy-backtracking
and iterative REFINE

Figure 15 shows the gains of greedy backtracking against
iterative on query Q2 from the Galaxy workload, using 1.6%
of the dataset size as partitioning size threshold, and without
enforcing diameter conditions. In this run, both algorithms en-
counter infeasible groups. Iterative REFINE requires several
Phase 1 iterations to solve them, while greedy backtracking
immediately backtracks at the first infeasible group. This
greedy strategy proves better for greedy backtracking in most
of the cases.

5 Incremental evaluation: Distance from optimal

A potential factor that could impact incremental evaluation
with preconditioning is the distance of the seed package from
the optimal solution. We consider two ways to measure this

Sp
ee

du
p

(a) Tuple replacements

0 1 2 3 4 5 6 7 8 9
of tuple replacements

1

2

3

(b) Distance from optimal

0% 33% 67% 100%
% gap from optimal

1
3
5
7
9

Fig. 16: Average speedup provided by starting solutions
with worse objective values. Packages with tuples in com-
mon with the optimal package fare better than packages
that are close to the optimal in objective value.

distance: (1) the number of tuples that differ between the
packages, and (2) the difference in the objective values.

Tuple difference. For each query in the Galaxy workload,
we first compute the optimal package results, and then create
seed packages by replacing tuples in the optimal package.
We search for replacement tuples that do not break feasibility
and do not worsen the objective value by more than 1% using
standard SQL. We create 10 feasible seeds for each query:
{s0,s1, . . . ,s9}, where si differs from the optimal package in
i tuples; s0 is the optimal package itself. Subsequently, si
is created by: (1) setting si to si−1; (2) removing one of the
tuples from si that also appear in s0; (3) inserting into si a new
tuple found via a SQL query that selects from the input table
a new (unused) tuple such that, when added to si, generates a
feasible package with an objective value not worse than the
objective value of s0 by a 1% factor. Figure 16a shows the
speedup against the number of tuples replaced in the package.
We see that the solver benefits a lot from seeds that share
a lot of tuples with the optimal solution. As expected, the
gains decrease as more tuples are replaced, and, eventually,

28 M. Brucato et al.

seeds with many different tuples can have a negative impact
on performance.

Objective difference. For each query in the Galaxy work-
load, we create a sequence of feasible seeds {s0,s1, . . . ,sk}
with progressively worse objective values. The first seed, s0,
is the optimal package itself. Subsequent seeds are generated
based on a “gap” parameter g ≥ 0: if the optimal value of
s0 is v0, then seed si has objective value vi ≥ (1+ i ·g)v0 for
minimization queries and vi ≤ (1− i ·g)v0 for maximization
queries.

Figure 16b shows the speedup when we range the gap
of seed packages from 0 to 100%. The results of this experi-
ment do not follow our initial intuition that speedup would
decrease as the distance from the optimal objective value de-
creases. We observe that the speedup is not consistent when
varying the objective value of the starting solution, and the
gains reduce quickly with distance from the optimal solution.
While we still observe performance gains until a distance of
30% from the optimal objective, these gains are generally
small. In larger distances from the optimal, preconditioning
results in some losses, but these are small as well. Contrast-
ing these results with the experiment on tuple-based distance
(Figure 16a), we conclude that it is important for a precondi-
tioning method to target tuples that are likely to appear in the
optimal package, rather than the objective value of the seed
package.

	Introduction
	Language support for packages
	ILP formulation of package queries
	Scalable package evaluation
	Theoretical analysis of SketchRefine
	Experimental evaluation of SketchRefine
	Parallelizing SketchRefine
	Incremental package evaluation
	Related work
	Conclusions and discussion
	Expressing package queries with ASP
	Hybrid Sketch
	Galaxy and TPC-H PaQL workloads
	Performance trade-off between greedy-backtracking and iterative Refine
	Incremental evaluation: Distance from optimal

